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Abstract

We prove that a system of conservation laws on R is locally well

N
posed in the ‘critical’ Besov space, Bflﬂ. The time of local existence
depends only on the size of the inhomogeneous part of the initial
data. We also obtain a blow-up criterion of the local solution. For the
conservation system with a dissipation term added we prove global

existence of solution under the assumption of smallness of the homo-
N

. . 51 c
geneous part of the arbitrary sized By}  norm of the initial data.
For the proof of these results we essentially use the Littlewood-Paley
decomposition of functions to derive the energy type of estimate.
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1 Introduction and Main Results

We are concerned on the following system of conservation law:

N

0 9,
Ap(w) 22 5" Ap(w) 2L =0, (2,t) € RY x (0,00) (1.1)
8t —1 a{L‘k
u(z,0) = ug(z), z€RY (1.2)
where u = (uy,---,un), u; = u;(z,t), j = 1,2,--- | N. We assume that

Ap(u) is a positive definite symmetric matrix satisfying the following uniform
bounds

C' < Ag(u) <CI  YueRY (1.3)

for some constant C' > 1, and Aj(u)’s are symmetric matrices. Addtional
technical assumptions on Ag(u) and Ax(u)’s will be specified in the statement
of the main theorems below. There are many examples of partial differential
equations that can be written in the form (1.1)(see e.g. [21]). For the Cauchy
problem (1.1)-(1.2) with the initial data ug given in H™(RY), m > & +1,
the local unique existence of solution is proved by Kato [18] and Lax [20]
independently. More specifically, they proved unique existence of solution
belonging to C([0,T]; H™(RY)) for some T = T(||ug|/zn). Recently there
are many studies on the extension of the regularity class of the initial data
for local existence/global existence for small data using the Besov, or Triebel-
Lizorkin spaces(e.g. [4]-[10],[12]-[16], [19], [24] and references therein). Most
of those results are concerned on the specific equations. In this paper one of

our aims is to prove the local unique existence and the continuation principle
N
in the Besov spaces, B2f1+1 for a rather general type of equations as in (1.1)-
(1.2). The other of our aim is to prove global existence for small data in
N
By, " on the system of the type (1.1)-(1.2) with a dissipation term added.
The following is our main theorem concerning (1.1)-(1.2).

Theorem 1.1 Let us assume that Ag(-), Ax(:),k =1,2,--- | N satisfy (1.3),
and the following conditions.

Ap(0) = AL(0) =0, Vk=1,2,--- N. (1.4)

Ao, Ay, Ay € WIEIBORN) -yl =12 ... N, (L.5)

where [§] denotes the smallest integer exceeding .

N

i) Local in time existence: Suppose uy € B 2 41 Then, there exists T =
2,1

T(HUOHB%“) such that a unique solution u(t) of the system (1.1)-

2,1 .

(1.9) exists, which belongings to L([0,T); B™) 1 C((0,7]; B3,)
N

Lip([0,T7; B,) for all s € [0, 5 + 1).
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N
(ii) Blow-up criterion: The local in time solution blows up in BQflﬂ at T, >

T, namely
lim sup ||u(t , =00 1.6
sup (o) 5 (16)
iof and only of
T.
/ IV u(t)|| pedt = oo. (1.7)
0

Remark 1.1: Regarding the continuity in time, although we proved below

that u(t) € C([0,T]; Bs,) for s € [0,% + 1), we could actually improve it
N

showing u(t) € C([0,T}; B2f1+1) adapting the argument in the Sobolev space

theory in Chaper 3 of [21].

Next, we consider the following hyperbolic conservation system with a
dissipation term added.

ou N ou N
G T Mg =k @R X000 (19
/u(x7 O) o ’U,O(x), T E RN, (19>

where Ag(u) , k =1,2,---, N, satisfy the conditions specified in the state-
ment of the theorem below. The following is our main theorem for the system
(1.8)-(1.9).

Theorem 1.2 (global unique existence for small initial data) Here we
set N > 2. Let us assume that Ag(-),k = 1,--- N in (1.8) satisfy (1.4)-
Ny N
(1.5). Suppose ug € By, ' N Byy. Then, there exists € > 0 with the following
property:
-1

If HuoHB%,1 < g, then there exists a unique solution u € C([0,00); B, ) N
21

o)z

LN
LY([0, o0); BQZJH) of the system (1.8)-(1.9), which satisfies the estimate

sup o)y 4 [ (ol s < Jual - oxo (Culal ).
2,1 2,1

0<t<oo 2,1 2,1
(1.10)

where Cr, Crr are absolute constants.

Remark 1.2: We will find that the local well-posedness for large initial

N
data’, ug € BZQJH, holds for the system (1.8)-(1.9), by obvious modification
of the proof of Theorem 1.1. For the case of large data in the less regular

N_
space considered in Theorem 1.2, By, 1, however, the local well-posedness of
(1.8)-(1.9) is open to the the author’s knowledge.



After this research was completed the author was informed the work by
D. Iftimie[17], where the author also considered the hyperbolic system in the
Besov space, but with less general settings than those covered by Theorem
1.1.

2 Preliminaries

In this section we set our notations, and recall definitions on the Besov spaces.
We follow [22] and [23]. Let S be the Schwartz class of rapidly decreasing

A

functions. Given f € S its Fourier transform F(f) = f is defined by

f6) = — - e f(x)dw
76 = gy [ ¢ @

We consider ¢ € S satisfying Suppp C {{ € R" | % < €] < 2}, and

(&) > 0if 2 < [¢] < 2. Setting ¢; = ¢(279¢) (In other words, ¢;(z) =

20N p(27x).), we can adjust the normalization constant in front of ¢ so that
(See e.g. Lemma 6.1.7,[3])

D> i) =1 vEeR"\{0}.
JET.
Given k € Z, we define the function Sy € S by its Fourier transform
S =1- )" ¢(&).
j>k+1

We observe
Supp ¢;N Supp ¢y = 0 if |7 — 5’| > 2. (2.1)

Let s € R, p,q € [0,00]. Given f € &', we denote A;f = ¢; * f, and then
the homogeneous Besov norm || f|| 5. is defined by

Q=

1.f1

Bs = [Eiooo 2jq8|’90j * f”%z)} if ¢ € [1, OO)
. sup; [2j5||<pj x fllze] if ¢ = o0

The homogeneous Besov space B;q is a semi-normed space with the semi-
ps - For s >0,p,q € [0,00] we define the inhomogeneous

s, of f€S as
Fllms, = 17 + 1l

The inhomogeneous Besov space is a Banach space equipped with the norm,
|- NIy, Let f e [LP(RV)]Y, and Ag(g) be the symmetric positive definite
matrix introduced in (1.1), then we introduce the modified L” norm by

norm given by || - |

Besov space norm || /]

1, = ([0 Ao<g>f>‘5dx)’l’ . (22)
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We will also use the following modified Besov space norm.

1

. q )
[Zoo 2%\ x |7, } if ¢ € [1,00)
Ao (9)

sup 2%/l + fllr, | g =00

Ag(9)

||f||ﬁ.;’q(g) =

for homogeneous spaces.
For s > 0,p, q € [0, 0] we also define the modified inhomogeneous Besov
space norm || f{|gs (g as

1/

Ba(9) = HfHLQO(g) + [ f 35 4(9)"

Thanks to the condition (1.3) on Ay we have the following equivalences

1A llzeg ~ W Fllzz /]

Ao(9)’

s, ~ IIflls, )
(2.3)

We now recall the following basic lemmas. We note that we use the same

constant C' in the inequalities following, which might be differ in each context.

By, ™ If B3 4(9) /]

Lemrrla 2.1 (Bernstein’s Lemma) Assume that f € LP, 1 < p < oo, and
Supp f C {2772 < |€| < 27}, then there exists a constant Cy such that the
following inequality holds

Cr 2| fllze < ID" fllee < G2 fl 1o (2.4)

As an immediate corollary of the above lemma we have the equivalence of
norms,

ID" £

Lemma 2.2 Let s > 0, q € [1, 00|, then there exists a constant C' such that
the following inequalities hold.

1falls;, < CUIF Nz ol

5y~ /]

By, T lalenllflls, ). (2.6)

where py,1m1 € [1,00] such that 1/p = 1/p1+1/ps = 1/r1+1/re. If 51,82 < %,
p>2, 8+ 5 >0, feB;}l,gEB” then

p,1’
19l

x <CO|f]

s1+sg—2 —
B P
P

s 191552 - (2.7)
Lemma 2.3 (i) Let s1,s9 € R, 0 € [0,1]. Then, the following interpola-
tion inequality holds.

£

11 oy a-mee < 17150 1711550 (23)

0-
Byl
Similar inequality holds also for inhomogeneous norms.
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(ii) Let s > 0 and f € B, NL®. Suppose G € WIIH22(RN) such that
G(0) =0 and s > 0. Then we have

1G]

5, < ClF s, (2.9)

N :
(iii) Let f,g € B)y, f—g € By, fors € (—%,%], and G € WIzlH3ee

G'(0) =0, then G(f) — G(g) € B;yl, and the following inequality holds

I6(9) - Glall, <€ (1Al +lallp )17 = ol 210

p,1 p,1

Lemma 2.4 If s satisfies s € (—% -1, %], then we have

[, Ajlwllze < ¢;277C V]| lw]

p,1

B (2.11)

with ZjEZ Cj S 1.

Lemma 2.1 is classical, and proved e.g. in [11]. The inequality (2.5) and
(2.6) of Lemma 2.2 is proved e.g. in [8] and [10] respectively. In Lemma 2.3
(i) follows immediately from the definition of norms; (ii) is proved in [10],
and (iii) is an immediate consequence of (ii), using the mean value theorem.
Lemma 2.4 is proved in the appendix of [15].

3 Proof of Theorem 1.1

We define a sequence of functions {u(™}%_, as solutions of the sequence of
linear system recurrently defined by

Oum+1) N Hu(m+D)

Ag(u™) o +) 0 Ap(u™) o =" (z,1) € R" x (0,00) (3.1)

u™ ) (2,0) = Sppug(z), =€ RY, (3.2)

where m = 0,1,2,---. In particular we set u(® = 0.

N
(i) Uniform bounds in Xr = C([0,T]; 32271“): We claim that there exist con-

stants Ty > 0, M; > 0 such that the solutions {u(™} defined by (3.1) for
m =1, satisfy

Au(m+1)

sup (Hu“"*”ntﬂ o

0<t<Ty 2,1

) < M. (3.3)

3
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Taking operation Ay’ (u(™), and then A; on the both sides of (3.1), we have

0 ulm+D
A ulm Y +ZA { ™) Ay (u™) “8 } =0 (34)

Lk

Applying Ag(u(™)), and then taking scalar product (3.4) with Aju, we obtain
after elementary computations

%(A ™ A (u™) Ayul™ ) = (Aut™ divA(u™)Aulm)

S
Z — (Au ™D Ay (u™) A ju )

8{L‘k
- (m+1) A () 1m0y 4 (g 2
#2357 (A A A5 ) A ) P
(3.5)
whereafter we use the following notations:
N
, A (ul™)
A=(A, A.--- A divA(u™) = YORY )
( 0, 411, ) N)v v (U ) kz; axk )
and
>
- (m) A .
171, = ([ Aot pac ) =1l oy
Integrating (3.5) over RY | we have the estimates
£||Aju(m+1)||%2 :/ (Au™ divA(u™)Ajum ) da
dt Ao RN
N au(m-i-l)
+2) / (Aju(m+1),Ao(u(m))[Aj,Aal(u(m))Ak(u(m))] )dm
—1 RN axk

IN

Ol divA(@™)|[ o [ Au™ V|7, 0

N
—i(X m — m m m
+Cc;2 ’(2“)Z||Aju( g, (145" (™) A (ul ))HBgHIIDu( gl [J7S

2,1

< CJA(ul )H N+1HA " HL2
By
+Ce; 27 E I Ajulm™ | 2 Hu Moy llu™ )y,
2,1 2,1
< CHU H N+1HA um+1 ”L
B2
+Ce27 A Um“)HLZ w1 ™D (3.6)
321 /321



where we used (2.7) and (2.9) for s = & +1 in the second estimate. Dividing
the both sides by HAjlt(erl)HLg4 , we obtain
0

d
RNCESY (m) Ly (meA)
1A g < Cllu IIBQ%VIHIIAJU Iz,

_ig(N m m
+Ce 277G W™ [y (3.7)
32,1 B

2,1
Multiplying both sides of (3.7) by 27 (34D, and summing over j € Z, we have

d

11, (m+1) < O (m) (m+1) 3.8
u u . u .

dt” ( >H/82N1+1 > H HE;%HH HBQN1+1 ( )

Gronwall’s lemma combined with the equivalence of norms in (2.2) implies

™y < CllSmaruoll oy 1exp( /IIUII NHdS)

2
32,1

< Cillul e (T s [0, ) 59

<t<T 2,1

for some absolute constants C, where we used the fact

(N
1Smruoll g < D> 2GEA;A |

21

JEZ j'<m+1
< 0 Y PO ST oG A e
j'<m+1 li—4'1<3
< c > 2| Aol 2 < Clluol| s
7'<m+1

We note parenthetically that the procedure from (3.7) to (3.9) is rather for-
mal, but can be easily justifiable by integration over [0,¢] of (3.7), and then
using the Gronwall lemma in the version of integral inequality instead of one
of differential inequality. By the standard induction argument applied to,
recalling u(®) = 0, we find that for

In2
="t (3.10)
201”“0”3%“
21
we have
sup [u" Oy <200l g Ym0 (311)
0<t<Ty By, By

N
In order to have uniform bound in B2271+1 norm of {u(™} we start with esti-
mate in L4 norm. We take L? inner product (3.1) with w(™™). Then, after
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integration by parts we have

d
Il (m+1) 12 _ (m+1) (m+1)
GV = [ @ diva () s

< ldivA(™)[|p [u™ e < CIA@M g llu™

2,1

< Clu™ ]yl - (3-12)
21

Adding (3.12) to (3.8), we have
d
1, (m41) (m) (m+1)

pr L Ol g S Cllu™ M s ™My (3.13)

21 2,1

The same remark as the one below (3.9) holds here. By Gronwall’s lemma
we have

O] g0 < 1™ e (€[ 1y ds) G

'321

and due to the equivalence of norms in (2.2),
[ @)y, < Ol N+1exp( / )y d)
< Clluoll s exp (CT sup uu“")u.m). (3.15)
32?1 0<t<T 32?1

This, combined with (3.11), implies

sup ™ V()] . <2,

ol xor exp(CoTh|Juoll N+1) Vm 2 0,

0<t<Ty 2 1 2 1
(3.16)
where Cy ia an absolute constant. From (3.4) we have
ou (m—+1) ou (m+1)
—_— N AR (u™ 3.17
2% ) | FRY
Multiplying 2%, and summing over j € Z of (3.17), we find
Oum+1) N Sy (m+1)
< AL )Ak(u(m))
’ ot Bﬁ ; Oxy, 32%
N
Jum+1)
-1 m m
< O3 s >>>|Bﬁ .
k= ) L
N ) Ou(m+1)
kZ A | =2 o
< CHU(m)H Hu(m+1 [ (3.18)

2
B21



N
where we used (2.8), and the imbedding B2, — L*(RY). On the other
hand, from (3.1) we have immediately

Ou(m+1) N Sy (m+1)
< Ayl Ag(ul™
‘at L2—Z;° ()aka
N
au(m—i-l)
l m)
< OX IO | T
< C||U(m |y [1Du™ ] 2. (3.19)
Adding (3.19) to (3.18) we find
o (m+1
129 4 < ety i, 3.20)
B2 By By
From (3.16), we obtain
o (m+1)
sup “ v <C. (3.21)
o<i<ty || Ot |2

Combining (3.21) with (3.16), we completes the proof of (3.3).

(it) Contraction in Yy := C([0,T); B3;),s € [0, 5 +1): We will show that

[|ulm+) — u(m)HyTo — 0 as m — oo for some Ty € (0,7}]. Taking differ-
ence between the (m + 1)th equation and the (m)th equation, we obtain
after arrangement of terms

al um+1) g, (m)
D Ay — ol DI {2 —u)
- (™)
== ; A, {((AolAk><u<m>) — (A A (u™ 1)) a@xk } (3.22)

Applying Ag(u™), and then taking scalar product in RV of (3.22) with
Aj(ul™+D — 4™ we obtain by the computations similar to the above
0 D) _ ym) A (VAL (D) )
5 (Aj(u —u Ao(u )A(u —ul™))
(Aj(u (m+1) ™)), divA(ul )Aj(u(m+1) — u(m)))
Al

8a:k

(m+1) (m))7 Ak(u(m))Aj(u(m“) — u(m)))
k

—_

10



— ™), Ag(u™)[A;, Ayt (u™) Ay (u

+22< (um+
_Z(

m+1)

™), Ag(u™)A, {((AEIAk)(U(m)) - (AEIAk)(u(m—l)))

m a m m
( ))]8_(U( 1) )))

Tk

Au ™

Integrating both sides of this equation over R"™, we have the following esti-

mates

d m m
S — a2,

= / (A (u™ ) — ™) divA (™) A (™ — 4w ™)) de
RN
0

+2Z / ( ulmty <m>>,Ao<u<m>>[Aj,Aa%u(m))Ak(u(mm7k<u<m+l>—u<m>>) da

oul™

—Z [ (B =) A, (A A0 ) = (A5 A )

RN Tk
< iAW) —u™)|2,

OGS A — ) A ) Ay Yyl =
k=1 21 2,1
m+1 (m) a 1 (m) _1 (m—l) au(m)

FOID ), S {57400 - (5 a0} e |

< Ol 1A ™D —u ™3,

02 HA; ) =™ N g =l
+1) = 1 1 1y Qut™

+CO|A; (ut™ u(m))“Lio Z A, {{(Ag Ap) (™) — (Ag T Ap) (ul™ ))} Fon } .

k=1 L2

Dividing both sides by [|A;(u(™+Y) — u(m))HL?4 , we obtain
0

HA ( (m—+1)

FCe2 H ™y Ju Y — ]y
N ’ ]

w0y |a {{(A*Akx ) (A7 Ay )y 2
k=1

11

(m))“Lio < CHu(m)HB;]%HHAj(u(m+1) — ™

Moz,




Multiplying 237 and, then summing over j € Z both sides, we obtain

d
(m+1) (m) m) (m+1) _ , (m)
—||u ) —uw" )| . x <Cllu U Uu N
7 (t) ( )Hﬂ;zvl Jul HB2N1+ .l ”ﬁﬁ
O™
1A — (A:'A
< C||u(’” IIgHIIU(m“) ul™||. 55
B21
oul™
+C Ayt Ag) A AR (W™ D)
§:H D) = (AT ANl | T
< CHU(m I ﬂﬂllu(m*” ul™|. o
21 2
(m) (m—1) (m) _ , (m—1) m)
U =+ |lu N )||u U U
(5 + ) [P e
< Ol ™y 4+ Ol Iy (3.23)
2

-

for t € [0,T3], where we used (2.10) combined with the uniform estimate
(3.11). The corresponding estimate of ||u(™*+1) —, (™) |2 is similar the above,
0

and simpler. Taking L? inner product with the equation of Agy(u m)) (u(m“) —

u™) by u™+1) — (™ and then estimating using the Holder mequahty, and
integrating by part, and then dividing the both sides by [|u(™+1) —¢™)]] 12
we have ’

d m m : m m m
@) =™ Ol < ClldivA@™) e Ju™ D = u™ s

+O Y NAu™) = Ap(u D)l
k=1

C”u(m)HB%HHu(mH) - u(m)HL?% + CHu(m) - u(mil)”LQ”u(m)HB%H
21 21

Lo

IN

< O™ = u™| g+ O™ — Y (3:24)

for t € [0,71]. Adding (3.24) to (3.23), we have
d

LMD (1) — M) (4 < O™ (m+1) _,,(m)
") —u ()Hﬁﬁ_ I HBleHHu u ”ﬁﬁ
< O™ —uM|| y + Cllu™ —u™Y| (3.25)
52?1 182?1

on [0, 71]. Using Gronwall’s inequality, and the equivalence of norms in (2.2),
we obtain

(m+1)

IN

(m+1 m m—
Ce (Jlug™ " —ug™| y +ﬂw —u™ Vly,.)

[ u™ |y

< CeT([|Amuol 55 +THU —u™ Vy,). (3.26)

12



for T' < T} From this combined with the fact

Aol y < C2 ™| Anuoll . < C2 ™ol y. <C2 (327)

2 2,1 2,1

[

which follows from Bernstein’s lemma, we can easily deduce that there exists

N
u € L>([0, T1]; B;jl) such that the sequence, {u™} converges to u in Y.
Due to interpolation inequality (2.7) for inhomogeneous space we have for

all se [§, 5 +1)

sup lu(t) —ul™(t)|

0<t<T i
N
< su u(t) — u™ @) 2 T + [ (¢ sy
< O<£T{H ) =N IO+ 1O 5.)
N_
< C sup Hu—u(m)le2 "0 as m — 0o,
0<t<T

2,1

and by the three e-argument we find v € C([0,T]; B3, ) for all s € [§, § +1).
Now, from the uniform estimate (3.16) we have

au(m—I—l)
ot

L dt < Clty — t
37
21

4 =
Bz,l

t1
[ () — ™ ()] < /
to

for all t1,ty € [0,7}]. Thus, we have

I\U(tl)—U(tz)HBQg =< HU(tl)—u(m)(tl)HBQJ?J1 +C\t1—t2\+y|u(t2)—u<m>(t2)\|32%.

(3.28)
Passing to limit m — oo in (3.28), we obtain u € Lip([0,Ty}; B7,). The
proof of uniqueness of solution is similar to the contraction part of the proof
above, and we will be very brief. If uy, us are the two solutions corresponding
to initial datum, u,us respectively, then Following the same procedure
leading to (3.26), we obtain

-

s

Jur — uzllyy < C€CT(||U1,0 - U2,0|\Bg + Tflur — uz|lyvz),
2,1

from which we deduce that if uy g = ugg, then uy(t) = ug(t) for all ¢ € [0, T1]
if Ce“™T, < 1. Thus the uniqueness of solution is proved on [0,77] for
T < min{Ty,T>}. In order to prove the continuation principle we just observe

that starting from (1.1), and following the procedure leading to (3.15), we
find that

T
sup (01 < Cllwollyrexp (€ [ ITulimts) . (329)

0<t<T 2,1 2,1

13



On the other hand, we have the obvious inequalities,

T
/ |Vul|pedt < C / )] 505 < CT sup )] y0e (330)

21

N
thanks to the embedding B;jl < Lip(RY). The blow-up criterion follows
from (3.29) and (3.30) immediately. This completes the proof of Theorem
1.1. 0O

4 Proof of Theorem 1.2

We define a sequence {u(™} by solving the linear system iteratively

N

au(m—i-l) 8u(m+1)
Ag(ut™ = pAum t) e RY x (0 4.1
2 A T — = B () € R X (0.00) (41
w™ (z,0) = muo( ), x€RY, (4.2)
where m = 0,1,2,---, and we set u(9) = 0.

N
2

(i) Uniform bounds in C([0, c0); Bgl )N C(]0, 00); 32 1) N LY([0, 00); Biﬂ)

for small ||ug|| .~ _,:
Bah

Taking operation A; on (4.1), we obtain

Jum+1)

P N
_A MCERY +ZAj {Ak(u(m))

Py } = pAAumY. (4.3)
k=1

Tk

Taking L? inner product of (4.3) with A;u(™*Y we have after integration by
parts

1d

5 18V 3 4l VA
N

oulm+
- — [A-,Ak(u )] A (m+1))

;( ’ Ok ’ L2
1%(A me DA6(™) <m+1>) (4.4)
2 J axk ’ J 12

14



Thus, using (2.3), (2.11), we estimate
d ,
AU + Cp2¥ | AtV

N
< 2y
k=

Jum+1)
A]? Ak )]

,i

< 273 ZnAk NI ™I 1A

By 2,1

A ™)

L2

OA(u™)

12u V][
Lo

+CZ Ay llAu . (4.5)

Dividing the both sides by ||A;u™*V|| 2, and using (2.9), we obtain

d :
SIAUH |+ 2 Ayl

< Co29@ ™|y [[u™ ) N
B2 21
+C||u(m)\|3%+1||Aju(m“)\|Lz. (4.6)
21

Multiplying 293~V and summing over j € Z, we find
d

allu(m“)llB L+ Crpllul™ ]y s < Cyllu™]| pin IIU’”“)II L (A7)
2,1 21

By Gronwall’s lemma we have

sup [ O] 5+ Con [ )]y s

0<t<o0o 2,1 2,1
< Hu(()mH)H N1 €Xp (C’/ Hu(m)(S)H .]%,Hds)
B2,1 0 B2,1
< Gollugll -, exp (Cz/ ™) ()] ,%1(15) (4.8)
Bz,l 0 B2,1
form=1,2---. We set K = max{Ciu,Cs}. Let the initial data ug satisfy
In(2/K
ool -+ < 22, namely
Kexp(2K||u0|| yo.) <2 (4.9)
2 1

Then, from our setting u(®) = 0, and using (4.8)-(4.9), we can see easily

sup ||u(m+1)(15)||B4vj_1 +01M/0 ||u(m+1)(3)||B7+1ds< 2||U0||BN . (4.10)

0<t<o0o 2,1 2,1

15



for all m = 1,2,--- by an induction argument.
Taking L? inner product of (4.1) with u(™*1) we have after integration by
parts

N

Ld | onsn 1 O A (u™)
m V (m+1) - _ (m+1) (m+1)

gl e IV = 5 3 (w0 PR e )

1 1
< _Z ||u(m+1)’|%2 < _Z HAk(U(m))H N ||u(m+1)||%2
2 Lo 2 — B2

< Cl\um IIBgHHu | 2. (4.11)

2,1

aAk

By Gronwall’s lemma, we obtain

sup [[ul™ D (8)|| 2
0<t<o0o

AN
=
O

+
5
¢

>
ko)

VR
S
o\,.

3
=

S
S
-
=
t

QL

~

~__

< Cyllugl|z2 exp (02/ HU(m)(t)HB%Hdt) (4.12)
0

Combining (4.11) and (4.12), we have

sup ||u(m+1)(t)HB%_1 +C’1u/0 lu™ ) (s)]] ﬂﬂds
2,1

0<t<oo 2 1
< Calluly e (G [ I yds) . 1y
2 1 0 32,1
for m =1,2,---. From an uniform estimate (4.13), and (4.9) we have
sup [[u™ @)y + Cm/ [ D ()] s < 2ol - (4.14)
0<t<o0o 2 1 B2 1

N_
forall m =1,2,---, if ug € By, " satisfies (4.9).

N
Next, we derive the uniform estimate of ™ in C([0, c0); By,). Following

the same procedure as in (4.1) to (4.5), but using (2.11) with s = & — 1
instead of s = % — 2, we obtain

d m j m
EHAW( |2, 4+ Cp2¥ || Ajul™ |2,

N
N
< Ce2797 ) || Ag(ul )II o ™Y Iy 14 D

k=1 21 21

N
O Ay AV 3

16



Dividing the both sides by ||A;u™*Y| 12, and using (2.9) again, we obtain

d m —iX m m
AV < CeTE Oy

O™y 180D 2.
32,1

=

Multiplying 27 %, and summing over j € Z, we find

d
— ™)y < O™y ™Iy
dt B2 B By

By Gronwall’s lemma we have

sup a0 s < B e (€ [T Iy as)
0

0<t<oo0 Bz,l 32?1 2,1
D
< Cluoll, y exp (C | d)
32?1 0 B2?1
for m =1,2,---. Since we have the uniform bound,

sup [ )],y s < o0
meN Jo B

21

. N

by (4.10), we have the desired uniform estimate in C'([0, 00); By;).

N
N

N
(i) Contraction in C([0,00); By, ) N L*([0, 00); Bflﬂ): Taking difference be-
tween (m)th equation and (m — 1)th equations of (4.1), we have

Aum+D) — ymy K N R )
ai 2 A=
k=1
N
(m) (m-1yy, 2™ (m+1) _ y(m)

= — Z(Ak(u ) — Ag(u ) v + pA(u —u'"™), (4.15)
k=1

(um ) — ™) (0, 2) = Anug(z). (4.16)

Operating A; on (4.15), and then taking L? inner product with A;(u(™+1) —

17



u™), we find after integration by part,

Laya
g a1 it

= Z ([A37 Ak:( )]8(u(m+1) — u(m)) 7 Aj(u(mﬂ) o u(m))>

aSEk

(1) — ) |12, 4 | VA (0D — w2,

k
N

1 0A (u(m))

- (g, mA1) _(m)\ TR ) (g, (m+1) _ . (m)

#32 (Ay(ume - um) 2 gy - >)L2

k=1

= (m) 1)y U™ (m+1) _, (m)
=3 (8 { ety = angum ) G L A <))
k=1 L2

Hum+D) _ 4 (m)

2u D — ™

WE

k=1 axk L2
1SN || A (ul™)
1 b Cmt)) ()2
e B I e
k=1
= (m) (m—1)y] U™ (m+1) _ ,m)
38 { fanta) - ) am} N iz
k=1 L?
< Ce2 Y ZHAk || o [Julm Y ™| 7_1||A( (m+D) — ™) ||
21
+CZ||Ak ™) N+1||A( (m+D) — (™) ||2,
k=1
S (m) (m-1)y] Oul™ (m41) _, (m)
# 3 [a { faututm) — anu ) St —
k=1 Lk L2
(N _ m m m m m
< CeHED [yl ) A — )

2,1 2,1

+C||u(m)||32gl+1 12 (™ — u™)|,

m m— au(m) m m
e N e

(4.17)

As previously, we divide by ||A; (™) —u(™)|| 2, and multiply 2/(2 =V and

18



sum over j € Z. Then we have

N
where we used (2.10) and the unform estimate of {u(™} in C([0, 00); Bzf )
proved in the step (i) above. Taking L? inner product (4.15) with u(m*V

d m m m m
S — ) Ol — ]y
2.1

2

< Oy ™D — ™y
21 2,1

= (m) (m—1)y, Qu"™
O Aela™) = A DT
k=1 2,1
< CHu(m)HB%H Hu(m—i_l) - u(m)H N

2,
O Ap(@™) = Ap(u™ )|y ™y

2
32,1 B2 1

(m+1) _,,(m) |

IA
Q
<

O gl
2.1

(m) (m) _ , (m=1)

1™, we have after integration by part

1d
2dt

IN

IA

IN

™Y — a7 4 |V (Y — )7

1 DA (ul™)
1 D) _ g m IAT) ey ) )
QZQ 2 ¢ ) |

k=1

(4.18)

m+1

N
E : m m—1 m+1 m

k=1
1 O A (ut™) (m41) . (m))2
330 [ F |
k=1
- (m) (m—1) oul™ (m+1) _, (m)
+Z][Ak(um)—Ak(um M z2 |t —ul ™| 2
k=1 Le
CEZw% Dl sl —
+Cz_: | Ag(ut™) — Ak(u(m_l))|]L2||u(m)||32%+1 [ — ul™)|
C™ | g D — ],
21
+C||u(m)||3g+1 ™ — @D o | — Mo (4.19)
2,1
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Hence, we obtain
1d

R Rl PR L B 1P

< Clut™ |y flu®™ D — a2
2,1

+C||u(m)HBg+1 [ ul™ — =D . (4.20)
2,1

Adding (4.20) to (4.18), we have

d
g m+D) _ (m) C (m+1) _ , (m)
dt”u u Hijl—l"i_ /L”U U HBQ%H
(m) (m+1) _ , (m)
< O™l g™ =]y
+C|ut™ Hgﬁ“ ™ — (D) ”Bﬁ*' (4.21)

By Gronwall’s lemma we obtain

sup ||U(m+1)<t) - U(m)(t)”B%A + C(3N/ ||U(m+1) - U(m)HB%Hdt
0 2,1

0<t<oo 2,1

(m+1) _ (m) )
S e (o A Ty

21

e OB ICT Ny A PLCT

0<t<oo BQ?l 2,1

X exp (o JAERT gﬂdt)
0 Bz,l

C2 0™ Al 2 exp (04””0”3%1)

2,1

IA

10 [ sup [|u™(t) — “(m_l)(t)HB%’l + Cgu/o D) — U(m)HBZNIHdt X

0<t<o0o 2,1

X HUOHB%—l exp (04”710”31;_1) )

2,1 2,1

Thus, if |luol| .y, is so small that
3221

1
C5Hu0”32%,1 eXP(Cz;HuoHBgl,l) < B (4.23)
then we have ]
5m+1 S COém + §5m, (424)

where we set

i = sup [0 =0 x4 Cop [ =y

0<t<oo 2,1 2,1

20

(4.22)



and N
Ny = 2(5_1)m||AmUOHL2.

Since

[e.e] [e.e]

N _
Yoan< Y 2G| Aule = luoll 51 < 0
m=1

m=—00 21

we deduce easily that d,, — 0 as m — oo, and thus {u™} is a Cauchy
sequence, and there exists u in L>([0, 00); Bﬁfl) N L([0, 00); BQ%H), which
is the limit if the sequence {u™}, and a solution of the system (1.12)-(1.13).
The fact v € C(|0, oo);Bfl_l) follows by the convergence, u™ — wu in
LOO([O,OO);BQ%A), and applying the three £ argument. For the proof of

N_ N
uniqueness we suppose two solutions u,v € L*([0, 00); By, 1)ﬁLl([O, 00); BQQJH)
correspond to the same initial data ug = vg. We set

0<t<oo 2,1

5= s ult) =00 g+ Cae [ lu(®) = o)y

Following the same procedure as the proof of contraction part of {u(™}

above, we obtain § < £6, instead of (4.24), if HUOHB%4 is so small that
21

1
C‘:’HUOHB,%” exp(C’4||u0||B2%71) < 5

Thus we have § = 0, and u; = us. This completes the proof of Theorem 1.2.
O
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