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Abstract. In this paper I present a Minimum Description Length Es-
timator for number of sources in an anechoic mixture of sparse signals.
The criterion is roughly equal to the sum of negative normalized maxi-
mum log-likelihood and the logarithm of number of sources. Numerical
evidence supports this approach and compares favorabily to both the
Akaike (AIC) and Bayesian (BIC) Information Criteria.

1 Signal and Mixing Models

Consider the following model in time domain:

xd(t) =

L∑
l=1

sl(t− (d− 1)τl) + nd(t) , 1 ≤ d ≤ D (1)

This model corresponds to an anechoic Uniform Linear Array (ULA) with L
souces and D sensors. In frequency domain, (1) becomes

Xd(k, ω) =

L∑
l=1

e−iω(d−1)τlSl(k, ω) +Nd(k, ω) (2)

We use the following notations: X(k, ω) for the D-complex vector of components
(Xd(k, ω))d, S(k, ω) for the L-complex valued vector of components (Sl(k, ω))l,
and A(ω) the D×L complex matrix whose (d, l) entry is Ad,l(ω) = e−iω(d−1)τl .

In this paper I make the following statistics assumptions:

1. (H1) Noise signals (nd)1≤d≤D are Gaussian i.i.d. with zero mean and un-
known variance σ2;

2. (H2) Source Signals are unknown, but for every time-frequency point (k, ω),
at most one signal Sl(k, ω) is nonzero, among the total of L signals;

3. (H3) The number of source signals L is a random variable.

The probem is to design a statistically principled estimator for L, the num-
ber of source signals. In this paper I study the Minimum Description Length
approach for this problem.
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For this model, the measured data is Ξ = {(Xd(k, ω))1≤d≤D , 1 ≤ k ≤
T, 1 ≤ ω ≤ F}. Furthermore the number of sensors D is also known. The rest of
parameters are unknown. I denote θ = (θ′, L), where:

θ′ =
(
{(Sl(k, ω))1≤l≤L ; 1 ≤ k ≤ T, 1 ≤ ω ≤ F} , (τl)1≤l≤L , σ2) (3)

Notice that hypothesis (H2) above imposes a constraint on set (Sl(k, ω))1≤l≤L,
for every (k, ω). More specifically, the L complex vector (Sl(k, ω))1≤l≤L has to
lay in one of the L 1-dimensional coordinate axes (that is, all but one component
has to vanish). This fact has a profound implication on estimating the complexity
penalty associated to the parameters set. Some real world signals may satisfy
(H2) only approximately. For instance [1] studies this assumption for speech
signals.

1.1 Prior Works

The signal and mixing model described before has been analyzed by many works
before.

In the past series of papers [2–7] the authors studied (1), and several gen-
eralizations of this model in the following respects. Mixing model: each channel
may have an attenuation factor (equivalently, τl may be complex); Noise statis-
tics: noise signals may have inter-sensor correlations; Signals: more signals may
non-vanish at each time-frequency point (maximum number allowed is D − 1);
more recently we have considered temporal, and time-frequency, dependencies
on signal statistics.

A similar model, and a similar sparsness assumption, has been used by the
DUET algorithm [1], or by [8], [9].

Similar assumptions to [5] have been made by [10] for an instantaneous mix-
ing model. As the authors mentioned there, as well in [11, 12], and several others,
a new signal separation class is defined by sparsness assumption, called Sparse
Component Analysis (SCA). In this vein, this present paper proposes a look at
the Minimum Description Length paradigm in the context of Sparse Component
Analysis.

Before discussing the new results of this paper, I would like to comment on
other approaches to the BSS problem. Many other works dealt with the mixing
model (1), or its generalizations to a fully echoic model. A completely different
class of algorithms is furnished by the observation that, in frequency domain,
the echoic model simply becomes an instantaneous mixing model. Therefore
standard ICA techniques can be applied, as in [13, 14] to name a few. Next, one
has to connect frequency domain components together for the same source. The
permutation ambiguity is the main stumbling block. Several approaches have
been proposed, some based on ad-hoc arguments, [15, 9]. A more statistically
principled approach has been proposed and used by Zibulevsky [16] and in more
recent papers, as well as by other authors, by assuming a stochastic prior model
for source signals. The Maximum A Posteriori (MAP), or Minimum Mean Square
Error (MMSE) estimators can be derived. While principly they are superior to
Maximum Likelihood type estimators derived in [4, 5], or mixed estimators such
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as [1, 8, 9], they require a good prior stochastic model. This makes difficult the
comparison between classes of BSS solutions.

In the absence of noise, the number of sources can be estimated straightfor-
wardly by building a histogram of the instantaneous delay (τ), or for a more
general model see [10].

As I mention later, the MDL paradigm here may be well applied in con-
junction with other signal estimators, in particular with the MAP estimators
described before.

2 Estimators

Assume the mixing model (1) and hypotheses (H1),(H2),(H3). Then its associ-
ated likelihood is given by

L(θ) := P (Ξ|θ) =
∏

(k,ω)

1

πDσ2D
exp

(
− 1

σ2
‖X(k, ω) −A(ω)S(k, ω)‖2

)
(4)

In the next subsection the maximum likelihood estimator for θ′, and the maxi-
mum likelihood value are going to be derived.

Following a long tradition of statistics papers, consider the following frame-
work. Let P (X) denote the unknown true probability of data (measurements),
P (X|θ) denote the data likelihood given the model (1) and (H1-H3). Then the
estimation objective is to minimize the misfit between these two distributions
measured by a distance between the two distribution functions. One can choose
the Kullback-Leibler divergence, and obtain the following optimization criterion:

J(θ) = D(PX ||PX|θ) :=

∫
log

P (X)

P (X|θ)dP (X) =

∫
log P (X) dP (X)−

∫
log P (X|θ) dP (X)

(5)
Since the first term does not depend on θ, the objective becomes maximization
of the second term:

θ̂ = argmaxθE[log PX|θ(X|θ)] (6)

where the expectation is computed over the true data distribution PX . However
the true distribution is unknown. A first approximation is to replace the expec-
tation E by average over data points. Thus one obtains the maximum likelihood
estimator (MLE):

θ̂ML = argmaxθ
1

N

N∑
t=1

log PX|θ(Xt|θ) (7)

where N is the number of sample points (Xt)1≤t≤N .
As is well known in statistical estimation (see [17, 18]), the MLE is usually

biased. For discrete parameters, such as number of source signals, this bias has
a bootstraping effect that monotonically increases the likelihood and makes the
number of parameter estimation impossible through naive MLE. Several ap-
proaches proposed to estimate and make correction for this bias. In general, the
optimization problem is restated as:

θ̂ = argminθ

[
− 1

N

N∑
t=1

log P (Xt|θ) + Φ(θ,N)

]
(8)
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Following e.g. [18] we call Φ the regret. Akaike [17] proposes the following regret:

ΦAIC(θ,N) =
|θ|0
N

(9)

where |θ|0 represents the total number of parameters. Schwarz [19] proposes a
different regret, namely

ΦBIC(θ,N) =
|θ|0 log N

2N
(10)

In a statistically plausible interpretation of the world, Rissanen [20] obtains for
regret the shortest possible description of the model using the universal distri-
bution function of Kolmogorov, hence the name Minimum Description Length,

ΦMDL(θ,N) = Coding LengthKolmogorov p.d.f.(Model(θ,N)) (11)

Based on this interpretation, Φ(θ,N) represents a measure of the model com-
plexity.

My approach here is the following. I propose the following regret function

ΦMDL−BSS(θ,N) = log2(L) +
L log2(M)

N
(12)

where M represents precision in optimization estimation of delay parameters
τ (for instance the number of grid points of an 1-D exhaustive search). Thus
the optimization in (8) is carried out in two steps. First, for fixed L, the log
likelihood is optimized over θ′:

θ̂′MLE(L) = argmaxθ′P (X|θ′, L) , MLV (L) = P (X|θ̂′MLE , L) (13)

Here MLV denotes the Maximum Likelihood Value. Then L is estimated via:

L̂MDL−BSS = arminL

[
− log(MLV (L)) + log2(L) +

L log2(M)

N

]
(14)

In the next subsection I present the computation of the Maximum Likelihood
Value (MLV). Then, in the following subsection I argue the particular form (12)
for Φ(θ,N) inspired by the MDL interpretation. In same subsection I also present
difficulties in a straightforward application of AIC or BIC criteria.

2.1 The Maximum Likelihood Value

The material from this subsection is presented in more detail in [4]. Results are
summarized here for the benefit of the reader.

The constraint (H2) assumed in section 1 can be recast by introducing the
selection variable V (k, ω): V (k, ω) = l iff Sl(k, ω) 6= 0, and the complex ampli-
tudes G(k, ω). Thus a slightly different parametrization of the model is obtained.
The new set of parameters is now ψ = (ψ′, L) where

ψ′ =
(
{(G(k, ω), V (k, ω)) ; 1 ≤ k ≤ T, 1 ≤ ω ≤ F} , (τd)1≤d≤D , σ2) (15)

The signals in θ′ are simply obtained through: SV (k,ω)(k, ω) = G(k, ω), and
Sl(k, ω) = 0 for l 6= V (k, ω).
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The likelihood (4) becomes:

L(ψ) =
1

πDNσ2DN
exp

− 1

σ2

∑
(k,ω)

‖X(k, ω) −G(k, ω)AV (k,ω)(ω)‖2

 (16)

where N is the number of time-frequency data points, and Al(ω) denotes the
lth column of matrix A(ω). The optimization over G is performed immediately,
as a least square problem. The optimum value is replaced in L(ψ):

logL((V )k,ω, (τl)l, L) = −DN log(π)−DN log(σ2)− 1

σ2

∑
k,ω

[
‖X(k, ω)‖2 − 1

D
|〈X(k, ω), AV (k,ω)(ω)〉|2

]
The optimization over (V )k,ω and (τl)1≤l≤L is performed iteratively as in the

K-means algorithm:

– For a fixed set of delays (τl)l, the optimal selection variables are

V (k, ω) = argmaxm|〈X(k, ω), Am(ω)〉| (17)

– For a fixed selection map (V (k, ω))k,ω, consider the induced partition Πm =
{(k, ω) ; V (k, ω) = m}. Then τm is obtained by solving L 1-dimensional
optimization problems

τm = argmaxτ

∑
(k,ω)∈Πm

|〈X(k, ω), Am(ω; τ)〉|2 (18)

This steps are iterated until convergence is reached (usually is a relatively small
number of steps, e.g. 10). Denote V̂MLE(k, ω) and τ̂lMLE the final values, and
replace these values into L. The noise variance parameter is estimated by max-
imizing L over σ2,

σ̂2
MLE =

1

N

∑
(k,ω)

[
‖X(k, ω)‖2 − 1

D
|〈X(k, ω), AV̂MLE(k,ω)(ω; τ̂MLE〉|2

]
(19)

Finally, the log maximum likelihood value becomes:

log(MLV (L)) =
1

N
log(L(ψ̂′MLE ;L)) = −D log(π) − 1 −D log(σ̂2

MLE) (20)

where ψ̂′MLE denoted the optimal parameter set ψ′ containing the combined
optimal values (V̂MLE(k, ω))(k,ω), (ĜMLE(k, ω))(k,ω), (τ̂l)1≤l≤L, σ̂2

MLE .

2.2 Number of Sources Estimation

The next step is to establish the regret function. As mentioned earlier the ap-
proach here is to use an estimate of the Minimum Description Length of the
model (1) together with hypotheses (H1-H3). In general this is an impossible
task since the Kolmogorov’s universal distribution function is unkown. However
the L-dependent part of the model description is embodied in the mixing pa-
rameters (τl)1≤l≤L, and the selection map (V (k, ω))(k,ω). Approximating by a
uniform distribution in the space of delays with a finite discretization of, say,
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M levels, and no prior preferential treatment of one source signal versus the
others, an upper bound on the description length is obtained as the code length
of an entropic encoder for this data added to the description length of the entire
sequence of models with respect to the Kolmogorov universal distribution:

l∗(Model;N) ≤ Llog2(M) +Nlog2(L) + C(Model) (21)

This represents an upper bound since l∗(Model;N) is supposed to represent the
optimal description (minimal description) length, whereas the description splits
into two parts: the sequence of models parametrized by ψ and N , and then, for
a given (L,N) the entropic length of ψ. This clearly represents only one possible
way of encoding the pair (Model(ψ), N).

This discussion justifies the following choice for the regret function ΦMDL−BSS

ΦMDL−BSS(L,N) =
L log2(M) +N log2(L)

N
= log2(L) +

L log2(M)

N
(22)

as mentioned earlier in (12).
Before presenting experimental evidence supporting this approach, I would

like to comment on AIC and BIC criteria. The main difficulty comes from the
estimation of the number of parameters. Notice that, using θ description, the
number of parameters becomes LN+L+2, whereas in ψ description, this number
is only 2N + L + 2. The difference is due to that fact that the set of realizable
signal vectors (Sl)1≤l≤L lays in a collection of L 1-dimensional spaces. Thus this
can be either modeled as a collection of L variables, or by 2 variables: complex
amplitude, and a selection map V . Consequently, the regret function for AIC
can be either L + L+2

N , or 2 + L+2
N . Similarly, for BIC the regret function can

be L log(N)/2 + (L+2)log(N)
2N , or log(N) + (L+2)log(N)

2N . The criterion I propose
in (22) interpolates between these two extrema, and, in my opinion, it captures
better the actual size of model parametrization.

3 Experimental Evaluation

Consider the following setup. A Uniform Linear Array (ULA) with a variable
number of sensors runging from 2 to 5, and distance between adjacent sensors of
5 cm, that records anechoic mixtures of signals coming from L ≤ 6 sources. The
sources are spread uniformly with a minimum of 30 degrees separation. Additive
Gaussian noise of average SNR ranging from 10dB to 100dB has been added
to recordings. The signals were TIMIT voices sampled at 16 KHz, and each of
length 38000 samples (roughly 3 male and female voices saying “She had a dark
suit in a greasy wash water all year”).

For this setup, the noise was varied in 10dB steps, and number of sources
ranged from 1 to 6. The delay optimization (18) was performed through a grid
search with step 0.05 samples. Since τmax = 2.4, there were M = 96 possi-
ble values of τ . Thus log2(M)

N = 1.7 10−4 and the correction term L log2(M)
N in

ΦMDL−BSS had no influence. Similarly, the L
N term in AIC and L log(N)

N =
3 10−4 L in BIC are too small. Therefore the only meaningful AIC and BIC were
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given by the former regret functions. To summarize, the source number estimator
is given by:

L̂MDL−BSS = argminL [−logMLV (L) + log2(L)] (23)

L̂AIC = argminL [−logMLV (L) + L] (24)

L̂BIC = argminL [−logMLV (L) + L log(N)] (25)

where the optimization is done by exhaustive search for L over the range 1 to
10. For a total of 1680 experiments (10 levels of noise x 4 number of sensors x 6
number of sources x 7 realizations), the histogram of estimation error has been
obtained. For each of the three estimators, the histogram is rendered in Figure
1. Statistical performance of these estimators is presented in Table at right.

Fig. 1. The histograms of estimation errors for MDL-BSS criterion (left bar), AIC
criterion (middle bar), BIC criterion (right bar). Table with statistical performance of
the three estimators.

4 Conclusions

The MDL-BSS estimator clearly performed best among the three estimators,
since the error distribution is the most concentrated to zero, in every sense: the
number of errors is the smallest, the average error is the smallest, the variance
is the smallest, the bias is the smallest. Estimation error is explained by a com-
bination of two factors: 1) source signals (voices) do not satisfy the hypothesis
(H2), instead there is always an overlap between time-frequency signal supports;
and 2) the estimates for location, noise variance, and separated signals were bi-
ased; this bias compounded and inverted the minimum position. The other two
estimators (AIC, and BIC) were biased towards underestimating the number of
sources.

This paper provides a solid theoretical footing for a statistical criterion to
estimate number of source signals in an anechoic BSS scenario with sparse sig-
nals. Extension to other mixing models (such as instantaneous) is obvious. The
regret function stays the same, only the MLV is modified. The same approach
can be used to other Sparse Component Analysis, and this analysis will be done
elsewhere.

The numerical simulations confirmed the estimation performance.
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