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Abstract. We consider a two-dimensional convection model augmented with the rota-
tional Coriolis forcing, Ut + U · ∇xU = 2kU⊥, with a fixed 2k being the inverse Rossby
number. We ask whether the action of dispersive rotational forcing alone, U⊥, pre-
vents the generic finite time breakdown of the free nonlinear convection. The answer
provided in this work is a conditional yes. Namely, we show that the rotating Euler
equations admit global smooth solutions for a subset of generic initial configurations.
With other configurations, however, finite time breakdown of solutions may and actually
does occur. Thus, global regularity depends on whether the initial configuration crosses
an intrinsic, O(1) critical threshold, which is quantified in terms of the initial vortic-
ity, ω0 = ∇× U0, and the initial spectral gap associated with the 2 × 2 initial velocity
gradient, η0 := λ2(0) − λ1(0), λj(0) = λj(∇U0). Specifically, global regularity of the
rotational Euler equation is ensured if and only if 4kω0(α) + η2

0(α) < 4k2, ∀α ∈ IR2 .
We also prove that the velocity field remains smooth if and only if it is periodic. An
equivalent Lagrangian formulation reconfirms the critical threshold and shows a global
periodicity of velocity field as well as the associated particle orbits. Moreover, we observe
yet another remarkable periodic behavior exhibited by the gradient of the velocity field.
The spectral dynamics of the Eulerian formulation, [20], reveals that the vorticity and
the divergence of the flow evolve with their own path-dependent period. We conclude
with a kinetic formulation of the rotating Euler equation.
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1. Introduction and statement of main results

Finite-time breakdown is a familiar trademark of nonlinear convection mechanism.
Consider the canonical example of an N -dimensional system of free transport equations,
Ut + U · ∇xU = 0. It follows — consult Corollary 2.2 below, that the solution U(t, ·) will
lose its initial regularity at a finite-time if and only if an eigenvalue of the initial velocity
gradient crosses the negative real axis, i.e., if and only if there exists at least one eigen-

value, λ(0, x) := λ(∂Ui(0,x)
∂xj

), such that λ(0, x) ∈ IR−. Consequently, finite-time breakdown

is a generic phenomenon for the free nonlinear transport. Thus, for example, irrotational
initial data ∇x ×U(0, x) = 0 — where all eigenvalues λj(t, x) remain real, will necessarily
lead to finite-time breakdown, except for non-generic cases where λj(0, x) ≥ 0, ∀j, x,
requiring, in particular, that the initial divergence is globally positive, ∇x · U(0, x) > 0.
This general N -dimensional scenario is completely analogous to the 1D inviscid Burgers’
equation, Ut + UUx = 0, where solutions of the latter will necessarily reach a finite-time
breakdown except for the non-generic case of monotonically increasing initial data.

Physically relevant models are governed by the fundamental Eulerian convection equa-
tion augmented by proper forcing F ,

Ut + U · ∇xU = F.(1.1)

Here, there is a competition between the finite-time breakdown dynamics driven by non-
linear convection and the balancing act of nonlinear forcing, F . Different models show up
in different contexts dictated by the different modeling of such forcing. Three prototypes
are dissipation, relaxation and dispersion. It is well known that if (1.1) is augmented with
a sufficiently large amount of either dissipation or relaxation, then (1.1) admits a global
smooth solution for a rich enough class of initial data. In both cases of dissipation and
relaxation, global existence is secured by enforcing a sufficiently large amount of energy
decay. Dispersive forcing, however, is different. The dispersive KdV equation, for exam-
ple, Ut + UUx = Uxxx, is a case in point. It admits global smooth solution while keeping
the L2-energy invariant in time.

1.1. The rotational model. In this paper, we study the regularity of the 2D convection
model augmented by rotational forcing,

Ut + U · ∇xU = 2kJU, J :=

(
0 1
−1 0

)
,(1.2)

subject to initial conditions, U(0, x) = U0(x). Here 2k = ε−1 where ε is the Rossby

number [24], ε = U
2ΩL

, expressed in terms of the characteristic length L, characteristic

speed, U , and the amplitude of angular velocity Ω of the rotating body, consult [16, 23].
With these parameters the system evolves on a characteristic time scale t ∼ L/U . The
system admits a global energy invariant in time, which is independent of the amplitude
of rotation encoded by the constant k on the RHS of (1.2). To see this, we note that (1.2)
is formally equivalent to the extended 3 × 3 system,

∂tρ+ ∇x · (ρU) = 0, x ∈ IR2, t ∈ IR+,(1.3)

∂t(ρU) + ∇x · (ρU ⊗ U) = 2kρJU,(1.4)
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which are the usual statements of conservation of mass and Newton’s second law, gov-
erning the local density ρ = ρ(t, x) and the velocity field U := (u, v)(t, x). The usual
manipulation, −1/2|U |2×(1.3) + U>×(1.4) and the skew-symmetry form induced by the
rotational forcing imply

∂t

(1

2
ρ|U |2

)
+ ∇x · (

1

2
ρU |U |2) = 2kρ〈U, JU〉 = 0.

The global invariance of the energy follows

E(t) :=
1

2

∫

x

ρ(t, x)|U(t, x)|2dx = E(0).

The system (1.3)-(1.4) coincides with a simplified version of the 2D shallow-water equa-
tions (SWE), lacking the additional pressure terms. Although (1.3)-(1.4) should not be
claimed as a faithful approximation to the general SWEs, it does arise as a meaningful
simplification, for example, when centrifugal forces are counterbalanced by underlying
gravity waves, see e.g. [11, 15]. The only remaining forcing in (1.3)-(1.4) is the rotational
Coriolis forcing, and our main quest in this paper is whether the action of dispersive ro-
tational forcing alone prevents the generic finite time breakdown of nonlinear convection.
The answer outlined in Section 4 is a conditional yes. Namely, we show that (1.2) admits
global smooth solutions for a subset of generic initial configurations, U0. With other ini-
tial configurations, however, the finite time breakdown of solutions may – and actually
does occur. Thus, global regularity depends on whether the initial configuration crosses
an intrinsic, O(1) critical threshold, which is quantified in terms of the initial vorticity,
ω0 := ∇x × U0 and the initial spectral gap, Γ0 := (λ2(0) − λ1(0))2.

Theorem 1.1. [Critical threshold for rotation forcing.] Consider the 2D rotational flow

(1.2) with k > 0. Then the solution of (1.2) with initial data U(0, x)
∣∣∣
x=α

= U0(α) remains

smooth for all time, −∞ < t <∞, if and only if the initial data U0 satisfy

i0(α) := 4k[k − ω0(α)] − Γ0(α) > 0, ∀α ∈ IR2.(1.5)

Moreover, if X(t) ≡ X(t, α) is the particle path governed by Xt = U(t, X), X(0, α) = α,
then the vorticity, ω(t) ≡ ω(t, α) and the divergence, d(t) ≡ d(t, α) := divxU(t, α) form a
periodic orbit in phase space (ω, d) ∈ IR2, with a period, T = T (α), given by

T =
2

k

∫ π/2

−π/2

dθ

(θ−1
0 + θ0) + (θ−1

0 − θ0)sinθ
.(1.6)

Here θ0 = θ(α) < 1 is determined by the initial data

θ0 =
√

1 + 8kp0 − 1√
1 + 8kp0 + 1

, p0 :=
√

i0

d2
0 +

(√
i0 − 2k

)2 , d0 = d(0).(1.7)

Several remarks are in order.
1. We note that the critical threshold (1.5) is independent of the initial divergence

d0 := divxU0.
2. Let us point out that system (1.2) could be viewed as a crossroad between the 2D

shallow-water equations and the so-called 2D pressureless equations, e.g. [1, 2, 3, 4, 8, 14],
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corresponding to Theorem 1.1 with k = 0,

∂tρ+ ∇x · (ρU) = 0, x ∈ IR2, t ∈ IR+,(1.8)

∂t(ρU) + ∇x · (ρU ⊗ U) = 0.(1.9)

According to Theorem 1.1, the pressureless system admits a global smooth solution for-
ward in time, and respectively — reversible in time, if and only if λj(0) /∈ IR−, and
respectively — if and only if λj(0) /∈ IR. The latter is equivalently expressed in Theorem
1.1 by the requirement Γ0 := (λ2(0) − λ1(0))2 < 0.

3. In particular, (1.2) does admit global smooth solutions with negative initial diver-
gence in contrast to the free transport (k = 0) equation discussed in the introduction.
It follows that rotation prevents finite time breakdown, either by a large Coriolis forcing
(k >> 1) or by a large initial rotation (Γ0 << 0).

1.2. Global solutions are periodic. We continue with couple of remarks on the peri-
odicity of the global solutions discussed in theorem 1.1. If we set y-independent initial
data, then (1.2) is reduced to the one-dimensional system

ut + uux = 2kv,

vt + uvx = −2ku,

with critical threshold (u′0(α))2 − 4kv′0(α) < 4k2. To interpret Theorem 1.1 in this sim-
plified setting, we observe that the gradient (ω, d) := (−vx, ux) solves a coupled system

(∂t + u∂x)ω + dω = 2kd,(1.10)

(∂t + u∂x)d+ d2 = −2kω,(1.11)

and a straightforward computation reveals the global invariant along the particle path,
Ẋ(t) = U(t, X), X(0) = α,

(2k − ω)2

d2 + ω2
= B0, B0 = B0(α) :=

(2k − ω0(α))2

d2
0(α) + ω0(α)2

.

The critical threshold statement in this case reads B0 > 1, stating that the gradient
(ω, d) forms a closed elliptical orbit in the phase plane (whereas B0 ≤ 1 corresponds
to unbounded parabolic/hyperbolic orbits). Following the analysis in Section 4, we also
obtain a path-dependent period for the gradient

T =
2

k

∫ π/2

−π/2

dθ

(θ−1
0 + θ0) + (θ−1

0 − θ0)sinθ
, θ0 =

√
B0 − 1√
B0 + 1

.

Such path-dependent period of the gradient reflects the fact that its governing system
(1.10),(1.11), is a nonlinear perturbation of the harmonic oscillator. As the Rossby number
approaches zero, however, k >> 1, θ0 ∼ 1, and the above path-dependent period T is
approaching the global inertial period π/k (the harmonic oscillator period).

As we shall see in Theorem 1.2 below, sub-critical initial data yield smooth velocity
fields, U(t, X(t)), with time period T = π/k, or — expressed in terms of the original
non-scaled time units, a period T = T U/L = π/Ω. This period of the particle orbits is
related to the global revolution of the plane. Theorem 1.1 points out yet another remark-
able property for a portion of the gradient of U(t, ·), namely, the divergence d(t, α), and
the vorticity ω(t, α) which exhibit a local period dictated by the unique initial parameter,
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8kp0. It is instructive to compute the period predicted in Theorem 1.1, using configu-
rations similar to those encountered in various applications. Let us illustrate a couple
of examples taken from [16]. For the Gulf Stream, with the Rossby number ε = 0.07,
L = 100 km and U = 1m/sec, we find that the vorticity and divergence of the flow
keep repeating themselves every T = T L/U ∼ 11.7hrs; for the weather system we have
ε = 0.14 with L = 1000km, U = 20m/sec, and the vorticity/divergence exhibit a period of
T = T L/U ∼ 12.2hrs. It is also interesting to see how this gradient period be influenced
by the small Rossby numbers. After rescaling we may assume initial configuration such
that d0 ∼ ω0 ∼ 1, for which a small Rossby number yields i0 ∼ 4k2, p0 ∼ 2k and hence
θ0 ∼ 1. Restored in terms of the original time scale, T = T L/U , the period is given by
the θ0-dependent elliptic integral,

T =
2

Ω

∫ π/2

−π/2

dθ

(θ−1
0 + θ0) + (θ−1

0 − θ0)sinθ
∼ π

Ω
,

which is close to the inertial period when the Rossby number is small. For the earth core,
for example, we have T = 11.95hrs with ε = 2×10−7, (L = 3000km and U = 0.1cm/sec),
whereas for Jupiter’s Red Spot we have a Rossby number ε = 0.015 (with L = 104km
and U = 0.1cm/sec) and the velocity gradient period T ∼ 5.13hrs. We should point out
the difference between the period of the velocity field vs. the velocity gradient periods,
which is due to our tracking of the flow dynamics along the particle path.

Of course, one should not expect the current cartoon model to provide a faithful descrip-
tion of the full model since other forces which are ignored at this stage, such as magnetic
forces, pressure, etc., play a decisive role in the dynamics of the problem. Nevertheless,
the ‘pure’ rotational model is interesting in its own sake, in particular since the rotational
flow is predicted to be periodic once smooth solutions are secured for subcritical initial
data. Surprisingly, the periods computed above fall within the physically relevant range.
It will be challenging to refine the estimates for these periods by taking into account other
forces which should complement the rotational model.

To put our study in a proper perspective we recall a few of the references from the
considerable amount of available literature on the global behavior of nonlinear convection
driven by rotational forcing. Let us mention the rotating Shallow-Water (SW) model
studies in [13, 17, 25] and the rotating incompressible Euler and Navier-Stokes equations
in [5, 6, 10, 7]. The common feature of these studies is rotation dominated flows with
sufficiently small Rossby number ε. The flow structure has been extensively studied in
terms of ε � 1. In particular, based on averaging the interaction of fast waves of the
rotating Euler equation, two dimensional structures were shown to emerge in the limit
ε→ 0, consult for example [5, 13]. For bounds on the vertical gradients of the Lagrangian
displacement that vanish linearly with the maximal local Rossby number we refer to [10].
It is well known that large-scale atmospheric (or oceanic) fields are in permanent process
of Rossby (or geostrophic) adjustment, [22]. A nonlinear theory of geostrophic adjustment
for the rotating SW model for small Rossby number is developed in [25]. The analysis of
an approximation for the rotating SWE can be found in [17].

When dealing with the questions of time regularity for Eulerian dynamics without
damping, one encounters several limitations with the classical stability analysis. Among
other issues, we mention that
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(i) the usual stability analysis does not tell us how large the perturbations can be before
losing stability – indeed, the smallness of the initial perturbation is essential to make the
energy method work, e.g. the 3D incompressible Navier-Stokes equation [18]; in particular
consult [9, Theorem 1] for a precise statement on the size of initial perturbations which
give rise to global regularity in time.

(ii) the steady solution may be only conditionally stable due to the weak dissipation
present in the system, say in the 1D Euler-Poisson equations [12].

To address these difficulties we advocated in [12, 19, 20], a new notion of critical thresh-
old (CT) which describes conditional stability, where the answer to the question of global
vs local existence depends on whether the initial configuration crosses an intrinsic, O(1)
critical threshold. Little or no attention has been paid to this remarkable phenomenon,
and our goal is to bridge the gap of previous studies on the behavior of rotational Euler
equations, a gap between the regularity of Eulerian solutions in the small and their finite-
time breakdown in the large. The critical threshold (CT) was completely characterized
for the 1D Euler-Poisson system in terms of the relative size of the initial velocity slope
and the initial density; consult [19, 26] for the CT for the convolution model for conser-
vation laws; Moving to the multi-D setup, one has first to identify the proper quantities
which govern the critical threshold phenomena. In [21] we have shown that these quan-
tities depend in an essential manner on the eigenvalues of the velocity gradient matrix,
λ(∇xU).

1.3. On the Lagrangian and kinetic formulations. The critical threshold for the
current rotation model can be also obtained, in a straightforward manner, through a
Lagrangian flow formulation. This is summarized in Theorem 1.2 below. We should point
out that it was the spectral dynamics analysis of λ(∇xU) that led us to the CT formulation
in the first place, which in turn was then sought within Lagrangian formulation. In Section
5 we prove

Theorem 1.2. [Flow map for rotation forcing.] The flow map associated with (1.2),

Ẋα := dXα/dt = U(t, Xα), subject to initial condition Xα(0) = α, is given by

Xα(t) =
1

2k
J−1e2kJtU0(α) + α− 1

2k
J−1U0(α).

For sub-critical initial data, (1.5), this flow map is invertible and periodic with an inertial
period T = π/k. The velocity field, U(t, Xα(t)) = U0(α) + 2kJ(Xα(t) − α), shares the
same inertial period.

At this point, one may wonder whether this inertial period is none other than the planet
rotation. Actually the two are not the same; the rotating planet completes one revolution
in a time equal to 2π

Ω
, while the period of the particle path expressed in the original non-

scaled variables is T = TL/U = π
Ω
. Thus, the particle goes around its orbit twice as the

planet accomplishes a single revolution, which is consistent with the observation in [11].
The periodicity of both the flow map and the “Lagrangian” velocity field stated in

Theorem 1.2 enable us to conclude that the time-periodicity of the “Eulerian” velocity
field as well as its gradient at any fixed location x.
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Corollary 1.3. For subcritical initial data, (1.5), the velocity field U(t, x) and its gradient
∇xU(t, x) are periodic in time with period π/k, i.e. (U,∇xU)(t+π/k, x) = (U,∇xU)(t, x)
for any t > 0.

Note that the different period for the velocity gradient stated in Theorem 1.1 is due to
its expression in terms of Lagrangian coordinate.

Finally we conclude in Section 6 with a kinetic formulation of the current rotation
model.

Theorem 1.4. The rotation model (1.2) admits for the following kinetic formulation

∂tf + ξ · ∇xf + 2kJξ · ∇ξf =
1

ε
(M − f),

where M{ρ,U}(ξ) is the Maxwellian given by

M =
ρ√
πT

e−|ξ−U |2/T , ξ = (ξ1, ξ2) ∈ IR2,

where ρ and U are macroscopic density and velocity respectively, and T is an arbitrary
fixed temperature.

In Section 4 and 5 below, we quantify the same critical threshold using the Eulerian and
Lagrangian formulations, and it would be of interest to derive the same critical threshold
directly using the kinetic formulation in Theorem 1.4.

2. Spectral dynamics

We consider a general nonlinear transport equation (1.1), Ut + U · ∇xU = F , and we
trace the evolution of ∇xU in terms of its eigenvalues, λ := λ(∇xU)(t, x). The following
result is in the heart of matter.

Lemma 2.1. [Spectral dynamics, [20, Lemma 3.1].] Let λ := λ(∇xU)(t, x) denote an
eigenvalue of ∇xU with corresponding left and right normalized eigenpair, 〈`, r〉 = 1.
Then λ is governed by the forced Riccati equation

∂tλ+ U · ∇xλ+ λ2 = 〈`,∇xFr〉.

As an immediate corollary we obtain the precise description for finite time breakdown
of free nonlinear transport.

Corollary 2.2. [Finite time breakdown of free transport, [20, Lemma 4.1].] The free
nonlinear N-dimensional transport

∂tU + U · ∇xU = 0, x ∈ IRN ,(2.1)

admits global smooth solution forward in time, t > 0, if and only if the eigenvalues of its
initial velocity gradient, λ := λ(∇xU), satisfy λ(0, x) /∈ IR−. Likewise, it admits a globally
smooth, time-reversible solution for −∞ < t <∞ if and only if λ(0, x) /∈ IR.

For the proof, we note that the eigenvalues, governed by the homogeneous Riccati
equations (2.1), propagate along the particle path x = x(t, α),

λ(t, x) =
λ(0, α)

tλ(0, α) + 1
.
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We note in passing that the rotational system (1.2) is to the full shallow-water equations
as the free transport model (2.1) is to the full Euler equations. The existence of a critical
threshold phenomena associated with global linear forcing model was first identified by us
[20], although the exact configuration cannot be obtained in such generality. The current
paper provides a precise description of the critical threshold for the 2D rotational system
(1.2). In particular, we use the Spectral Dynamics Lemma to obtain remarkable explicit
formulae for the critical threshold surface summarized in the main Theorems 1.1. Taking
the gradient of the velocity equation (1.2), we find that the velocity gradient field, ∇xU ,
solves the following matrix equation

∂t(∇xU) + U · ∇x(∇xU) + (∇xU)2 = 2kJ∇xU.(2.2)

Using the spectral dynamics Lemma 2.1, we obtain the spectral dynamics equations

∂tλ1 + U · ∇xλ1 + λ2
1 = 2kλ1〈l1, Jr1〉,(2.3)

∂tλ2 + U · ∇xλ2 + λ2
2 = 2kλ2〈l2, Jr2〉,(2.4)

where λi, i = 1, 2 are eigenvalues of the velocity gradient field ∇xU associated with left
(row) eigenvectors li and right (column) eigenvectors ri. Since J is skew-symmetric we
have Jr1 = α1l

>
2 and Jr2 = α2l

>
1 . Noting that l2r2 = l1r1 = 1, one then has α1 = 〈r2, Jr1〉

and

α2 = 〈r1, Jr2〉 = −〈r2, Jr1〉 = −α1.

Therefore, (2.3)-(2.4) now read

∂tλ1 + U · ∇xλ1 + λ2
1 = 2kλ1〈r2, Jr1〉〈l1, l2〉,(2.5)

∂tλ2 + U · ∇xλ2 + λ2
2 = −2kλ2〈r2, Jr1〉〈l1, l2〉,(2.6)

from which we deduce that the spectral gap η := λ2 − λ1 and divergence d := λ2 + λ1,
satisfy

∂tη + U · ∇xη + dη = −2kd〈r2, Jr1〉〈l1, l2〉
and

∂td+ U · ∇xd+
d2 + η2

2
= −2kη〈r2, Jr1〉〈l1, l2〉.(2.7)

On the other hand, differentiation of (1.2) yields the ∇xU -equation (2.2), i.e.,

(∂t + U · ∇x)

(
ux uy

vx vy

)
+

(
u2

x + vxuy duy

dvx vxuy + v2
y

)
= 2k

(
vx vy

−ux −uy

)
,(2.8)

which in turn – using the LHS of (2.5)-(2.6) to express λ2
1 + λ2

2 ≡ (d2 + η2)/2, leads to

∂td+ U · ∇xd+
d2 + η2

2
= −2kω,(2.9)

∂tω + U · ∇xω + dω = 2kd.(2.10)

Equating the expressions on the right of (2.9) and (2.7) we find

−2kω = −2kη〈r2, Jr1〉〈l1, l2〉.
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Thus, the scaled product of the eigenvectors measures the ratio of vorticity over the
spectral gap in the following manner

〈r2, Jr1〉〈l1, l2〉 =
ω

η
.(2.11)

When the spectral gap η shrinks to zero, the scaled product becomes unbounded due to
the degeneracy of eigenvectors. When the vorticity ω shrinks to zero, (2.11) recovers the
symmetry of ∇xU which is reflected through the orthogonality of `1 and `2. Equipped
with the above relations we come up with a closed system for (ω, d, η) along the particle
path (here and below ′ ≡ ∂t + U · ∇x)

ω′ + dω = 2kd,

d′ +
d2 + η2

2
= −2kω,

η′ + dη = −2k
dω

η
.

Note that the spectral gap may become purely imaginary when eigenvalues are complex.
To avoid the discussion on the complex solution of the above system, we introduce the
following real variable

Γ := η2.

Using the above equations we have

Γ′ = 2ηη′ = 2d[−2kω − Γ].

Note that the sign of 2k indicates the direction of the rotational forcing, and the vorticity
measures the rotation in the flow. In order to combine these two effects we introduce
ϕ := 4k2 − 2kω, and thus obtain a closed system for W := (ϕ, d,Γ)>

ϕ′ = −dϕ,(2.12)

d′ = −d
2 + Γ

2
+ ϕ− 4k2,(2.13)

Γ′ = 2d[ϕ− 4k2 − Γ].(2.14)

We shall use this system to describe the dynamics of the velocity gradient field. Lin-
earization of the above system around W ∗ = (ϕ∗, d∗,Γ∗)> gives the linear system W ′ =
A(W ∗)(W −W ∗) with

A =




−d∗ −ϕ∗ 0
1 −d∗ −1

2
2d∗ 2ϕ∗ −2d∗




The corresponding eigenvalues of A at critical points (ϕ∗, 0,Γ∗) are λ1 = 0, λ2,3 =
±
√
−2ϕ∗. The classical stability analysis based on linearization is not sufficient to predict

the global time dynamics.

3. Material Invariants

It follows from equations (2.12) and (2.14) that

dϕ

dΓ
=

−ϕ
2(ϕ− 4k2 − Γ)

,
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which upon integration gives the first material invariant

2ϕ− Γ − 4k2

ϕ2

∣∣∣
(t,Xα(t))

= C0, C0 ≡ C0(α) :=
2ϕ0 − Γ0 − 4k2

ϕ2
0

∣∣∣
x=α

.(3.1)

This material invariant enables us to reduce the full system (2.12)-(2.14) to the following
system

ϕ′ = −ϕd,(3.2)

d′ = −1

2
[d2 + 4k2 − C0ϕ

2].(3.3)

In order to have global bounded solution it is necessary to assume C0(α) > 0, i.e.,

Γ0 < 2ϕ0 − 4k2 ≡ 4k(k − ω0),(3.4)

for otherwise, (3.3) will be majorized by the Riccati equation d′ ≤ −d2

2
−2k2, which would

lead to finite time breakdown. As we shall see below in §4, the positivity of C0(α) is also
sufficient for global bounded solutions. Another material invariant is obtained along the
lines of [21, Lemma 2.2]: we set q = d2 to find

dq

dϕ
= 2d

d′

ϕ′ =
q + 4k2 − C0ϕ

2

ϕ
.

Integration yields

d2 + 4k2 + C0ϕ
2

ϕ

∣∣∣
(t,Xα(t))

= D0, D0 ≡ D0(α) :=
d2

0 + 4k2 + C0ϕ
2
0

ϕ0

∣∣∣
x=α

,(3.5)

and together with (3.1) we end up with a second independent material invariant

d2 − Γ + 2ϕ

ϕ

∣∣∣
(t,Xα(t))

= D0(α).

In summary we have

Lemma 3.1. Let ϕ := 4k2 − 2kω, d := ∇x · U = tr(∇xU) and Γ := (λ2 − λ1)
2 be

the solution of the dynamical system (2.12)-(2.14), associated with the rotational system
(1.2). Then we have the following material invariants along particle path (t, Xα(t)),

2ϕ− Γ − 4k2

ϕ2

∣∣∣
(t,Xα(t))

=
2ϕ0(α) − Γ0(α) − 4k2

ϕ2
0(α)

,(3.6)

d2 − Γ

ϕ

∣∣∣
(t,Xα(t))

=
d2

0(α) − Γ0(α)

ϕ0(α)
.(3.7)

4. Critical Thresholds

As we observed earlier, the positivity of condition, C0(α) > 0, is necessary for global
bounded solution, for otherwise

d′ < −1

2
[4k2 + d2],(4.1)

which would imply that d, and hence ϕ, become unbounded in a finite time. We shall show
that the same positivity condition, C0(α) > 0, is in fact sufficient for the existence of global
bounded solution. For C0 > 0, the reduced system (3.2)-(3.3) has two unique equilibrium
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points in the phase plane (ρ, d) ∈ IR2, (ϕ∗
±, d) = (± 2k√

C0
, 0). The local behavior of the

solution depends on the properties of these critical points. We note that since ϕ = 0
is an invariant set, then ϕ0ϕ(t) > 0 for all time, and we therefore concentrate on the
solution behavior for ϕ0 > 0, with the other case of ϕ0 < 0 being handled similarly. On
the right plane ϕ > 0, the coefficient matrix of linearized system of (3.2)-(3.3) around the
equilibrium point (ϕ∗

+, d) = ( 2k√
C0
, 0) is

(
0 −ϕ∗

+

C0ϕ
∗
+ 0

)
,

with purely imaginary eigenvalues, ±(
√
C0ϕ

∗
+)i. This means that the bounded trajectory

is possibly a periodic solution or limit circle. Observe that if (ϕ(t), d(t)) is a solution to
(3.2), (3.3), so is (ϕ(−t),−d(−t)). Such symmetry implies that (ϕ∗

+, 0) is a center and
the trajectory in a neighborhood of this equilibrium point is periodic.
In order to clarify the global behavior of the flow around the center, we appeal to the
material invariant (3.5) which we rewrite as

V+(ϕ, d) :=
d2 + (

√
C0ϕ− 2k)2

ϕ
.

V+(·) is a positive definite Liapunov function for ϕ > 0, and achieves its global minimum,
V+ = 0, at the equilibrium point (ϕ∗

+ = 2k√
C0
, 0). A family of closed orbits in the phase

plane (ϕ, d) can be expressed as the level set curve

V+(ϕ, d) = Const > 0,

since V+ is material invariant in the sense that dV+

dt
= 0. Similarly, on the left plane ϕ < 0,

one may use the Liapunov functional

V−(ϕ, d) =
d2 + (

√
C0ϕ+ 2k)2

−ϕ ,

whose level set curve determines a family of closed orbit on the left plane centered around
(ϕ∗

− = − 2k√
C0
, 0). The global behavior of the solutions is summarized in

Lemma 4.1. [Bounded solutions are periodic.] The system (2.12)-(2.14) admits a global
bounded solution if and only if its initial data (ϕ0, d0,Γ0) lie in the sub-critical region (
— independent of d0), where

Γ0 < 2ϕ0 − 4k2.(4.2)

Moreover, the bounded solutions of (2.12)-(2.14) are necessarily periodic. The periodic
orbit on the right plane ϕ > 0 lies on the ellipse d2 + (

√
C0ϕ − 2k)2 = (D0 − 4k

√
C0)ϕ,

where C0 and D0 are determined by the initial data in (3.1) and (3.5).

Proof. Equation (3.3) shows that if C0 ≤ 0 then (4.1) holds and the divergence blows
up. Thus, the positivity of C0(α) ∀α ∈ IR — namely, the sub-critical condition (4.2), is
necessary for global regularity. We turn to show that it is sufficient. Indeed, if C0 > 0
then the second material invariant in (3.5) takes the equivalent form

d2 + (
√

C0ϕ− 2k)2 = (D0 − 4k
√
C0)ϕ.
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The corresponding solution, (ϕ, d), travels along this elliptical orbit while being kept
bounded. In fact, ϕ and d are periodic and by the invariance of (3.6) or (3.7), Γ shares
the same period along the elliptical orbit. Finally, it remains to show the boundedness
of the whole velocity gradient, ∇xU . The latter follows from the boundedness of the
divergence d along the lines of [21][Lemma 2.1]. To this end we note that the ‘anti-trace’
of (2.8), r := vx + uy, satisfies r′ + rd = −2ks, where the ‘anti-vorticity’ s := ux − vy is
governed by s′ + sd = 2kr. Solving the 2× 2 couples system in terms of the divergence d
we obtain

r

s
= tan(tan−1(r0/s0) − 2kt), r2 + s2 = (r2

0 + s2
0) exp

(
−2

∫ t

0

d(ξ)dξ

)
.

Thus, s2 + r2 remain bounded. In fact, by the periodicity of d and its symmetry about
the axis d = 0 we conclude that s2 + r2 shares the same period with d. A more precise
statement follows from the identity s2 + r2 = Γ + ω2 which imply

r = sin(tan−1(r0/s0) − 2kt) ×
√

Γ + ω2, s = cos(tan−1(r0/s0) − 2kt) ×
√

Γ + ω2.

Being the product of two periodic functions with the corresponding periods π/k and T ,
we conclude that r and s are periodic if the ratio of these periods,

T

π/k
= 2

∫ 1

0

dξ

(θ0 + θ−1
0 ) + (θ0 − θ−1

0 )cos(πξ)
,

is a rational number. In this case, the overall gradient ∇xU is periodic with a integer
multiple of π/k as its period. This completes the proof.

Once we identified bounded solutions as periodic, the next step is to seek the period for
each periodic orbit.

Lemma 4.2. The period of each bounded orbit associated with (2.12)-(2.14) is given by

T =
2

k

∫ π/2

−π/2

dθ

θ0 + θ−1
0 + (θ−1

0 − θ0)sinθ
.(4.3)

Here θ0 = θ0(α) < 1 is given by

θ0 :=

√
1 + 8kp0 − 1√
1 + 8kp0 + 1

,(4.4)

where p0 is determined by the initial data

p0(α) =

√
2ϕ0 − Γ0 − 4k2

d2
0 + (

√
2ϕ0 − 4k2 − Γ0 − 2k)2

.

Proof. Due to the symmetry it suffices to compute the half period. The intersection points
of the ellipse V (ϕ, d) = V (ϕ±, 0) with d = 0 can be written explicitly in terms of the initial
data

ϕ− =
2k√
C0

θ0, ϕ+ =
2k√
C0

θ−1
0 .(4.5)

The trajectory from (ϕ−, 0) to (ϕ+, 0) in the lower-half (ϕ, d)-plane is given by (3.5)

d = −
√

D0ϕ− C0ϕ2 − 4k2 = −
√

C0

√
(ϕ+ − ϕ)(ϕ− ϕ−).
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By (3.2), ϕ̇ = −ϕd along this trajectory, whose period is therefore given by

T = 2

∫ ϕ+

ϕ−

dϕ

−ϕd =
2√
C0

∫ ϕ+

ϕ−

ds

s
√

(ϕ+ − s)(s− ϕ−)
.(4.6)

Let s = ϕ−+ϕ+

2
+ ϕ+−ϕ−

2
τ ; using the expression of ϕ± in (4.5) we conclude

T =
4√
C0

∫ 1

−1

dτ

[ϕ− + ϕ+ + (ϕ+ − ϕ−)τ ]
√

1 − τ 2

=
4√
C0

∫ π/2

−π/2

dθ

ϕ− + ϕ+ + (ϕ+ − ϕ−)sinθ

=
2

k

∫ π/2

−π/2

dθ

θ0 + θ−1
0 + (θ−1

0 − θ0)sinθ
,

which gives the desired result in (4.3).

5. Flow Map

For the smooth flow we may further study the structure of the flow map. Assume
x = Xα(t) is the flow map started at the initial position α, then one has

Ẋα :=
dXα

dt
= U(t, Xα), Xα(0) = α,

and the momentum equation can be written as

Ẍα = 2kJẊα.

Integration once gives

Ẋα = U0(α) + 2kJ(Xα − α),

where U0(α) is the initial velocity at location α. The above equation leads to the flow
map expression

Xα(t) =
1

2k
J−1e2kJtU0(α) + α− 1

2k
J−1U0(α).(5.1)

This flow map determines the unique smooth velocity field if and only if the indicator
matrix,

Γ :=
∂Xα(t)

∂α
= I − 1

2k
J−1(I − e2kJt)∇αU0,

remains nonsingular. Noting that J−1 = −J and

e2kJt =

(
cos(2kt) sin(2kt)
−sin(2kt) cos(2kt)

)
,

we have

Γ = I +
1

2k
J

(
1 − cos(2kt) −sin(2kt)
sin(2kt) 1 − cos(2kt)

)
∇αU0.
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Hence, with U = (u, v) we find

2kΓ = 2kI +

(
sin(2kt) 1 − cos(2kt)

cos(2kt) − 1 sin(2kt)

)
∇αU0

=

(
2k + v0x + uxsin(2kt) − v0xcos(2kt) v0y + u0ysin(2kt) − v0ycos(2kt)
−u0x + v0xsin(2kt) + u0xcos(2kt) 2k − u0y + v0ysin(2kt) + u0ycos(2kt)

)
.

A careful calculation gives its determinant as

det(2kΓ) = 4k2 − 2kω0 + 2det(∇αU0) + (2kω0 − 2det(∇αU0))cos(2kt) + (2kd0)sin(2kt).

Thus Γ(t) remains nonsingular for all time if and only if det(2kΓ) 6= 0, i.e.,

4k2 − 2kω0 + 2det(∇αU0)

6∈
(
−

√
(2kω0 − 2det(∇U0))2 + 4k2d2

0,
√

(2kω0 − 2det(∇αU0))2 + 4k2d2
0

)
,

which is equivalent to

(4k2 − 2kω0 + 2det(∇αU0))
2 > (2kω0 − 2det(∇αU0))

2 + 4k2d2
0.(5.2)

We now invoke the relation between the spectral gap Γ0, and the corresponding the
determinant and divergence,

Γ0 = d2
0 − 4det(∇αU0).

Applied to the above inequality (5.2), this yields

Γ0 < 4k2 − 4kω0,

which is exactly the critical threshold (1.5) stated in Theorem 1.1.

Shifting our attention to the Eulerian framework, we conclude this section with a discus-
sion on the time-periodicity of sub-critical velocity field for fixed location x. The solution
determined by

U(t, x) = e2kJtU0(α), x = α +
1

2k
J−1(e2kJt − 1)U0(α),

is implicit. For sub-critical initial data one could find α in terms of (t, x) and substitute
back to obtain the velocity. In fact α is given by

α = x +
1

2k
J−1(e−2kJt − 1)U(t, x),

which gives the velocity field implicitly determined by

U(t, x) = e2kJtU0

(
x+

1

2k
(e−2kJt − 1)U(t, x)

)
.

Combined with the critical threshold condition (1.5), this shows that for any fixed x,
U(t, x) and hence ∇xU(t, x) are periodic in time with period π/k and corollary 1.3 follows.
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6. Kinetic formulation

This section describes a kinetic formulation for the rotational model (1.2) in terms of
a density function, f = f(t, x, ξ) governed by the BGK model

∂tf + ξ · ∇xf + 2kξ⊥ · ∇ξf =
1

ε
(M − f), ξ⊥ := Jξ.(6.1)

Here M = M{ρ,U}(ξ) is the Maxwellian given by

M =
ρ√
πT

e−|ξ−U |2/T , ξ = (ξ1, ξ2) ∈ IR2.

The fixed temperature T , plays no role in this pressureless model. The connection between
the distribution function f and macroscopic flow variable is realized in terms of the usual
moments of density ρ, momentum m = ρU and total energy E = ρ|U |2/2,

(ρ, ρU, E)> =

∫
ψ>(ξ)fdξ, ψ(ξ) :=

(
1, ξ,

|ξ|2

2

)>
.

The conservation principle for mass, momentum and energy during the course of particle
collisions requires the equilibrium to satisfy the compatibility condition∫

(M − f)ψ>(ξ)dξ = 0,

while the rotational forcing is introduced through the potential∫
2kξ⊥ · ∇ξfψ

>(ξ)dξ = (0,−2kρJU, 0).

Indeed, a straightforward computation yields
∫

2kξ> · ∇ξfdξ = 0; for the momentum
equation we compute∫

2kξ⊥ · ∇ξfξdξ = 2k

∫
ξ(ξ2∂ξ1f − ξ1∂ξ2f)dξ

= 2k

∫ (
ξ1ξ2∂ξ1f
−ξ1ξ2∂ξ2f

)
dξ

= 2k

(
−ρv
ρu

)

= −2kρJU,

while the presence of this forcing does not change the energy equation since

2k

∫
ξ⊥ · ∇ξf |ξ|2dξ = 0.

The first three moments of (6.1) then yield the equivalent extended system of (1.3),(1.4),

∂t




ρ
ρU

ρ |U |2
2


 + ∇x ·




Fρ

Fm

FE


 =




0
2kρJU

0


 .

The corresponding macroscopic fluxes are

(Fρ, Fm, FE)> :=

∫
ψ>(ξ)ξfdξ,
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and under the closure f = M{ρ,U} we conclude

(Fρ, Fm, FE)> =
(
ρU, ρU ⊗ U, ρ

|U |2

2

)>
.
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