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Abstract

We propose a class of simple and efficient numerical schemes for incompressible

fluid equations with coordinate symmetry. With the introduction of a generalized

vorticity-stream formulation, explicit treatment of the nonlinear terms and local vor-

ticity boundary condition, the divergence free constraints are automatically satisfied

and the Navier Stokes (MHD, respectivley) equation essentially decouples into 2 (4, re-

spectivly) scalar equation and thus the scheme is very efficient. Moreover, with proper

discretization of the nonlinear terms, the scheme preserves both energy and helicity

identities numerically. This is achieved by recasting the nonlinear terms (convection,

vorticity stretching, geometric source, Lorentz force and electro-motive force) in terms

of Jacobians. This conservative property even holds true in the presence of the pole

singularity for axisymmetric flows. The exact conservation of energy and helicity has

effectively eliminated excessive numerical viscosity. Numerical examples have demon-

strated both efficiency and accuracy of the scheme. In addition, local mesh refinement

near the physical boundary can also be easily incorporated into the scheme without

extra cost.
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1 Introduction

In the numerical simulation of these flows, it is desirable to have exact numerical conservation

of physically conserved quantities such as the energy and the helicity. The conservation of

physical quantities not only provides a diagnostic check for physically relevant numerical

solutions, it also guarantees that the numerical scheme is nonlinearly stable and free from

excessive numerical viscosity. This is essential for large time direct numerical simulations as

well as the numerical search for possible flow singularities.

Preserving energy numerically for incompressible Navier Stokes equation has been quite

common in many numerical methods. For examples, a well known trick to obtain the con-

servation of energy is by averaging a conservative and a non-conservative discretization of

the nonlinear convection term. However, satisfying numerically two or more physical con-

servation laws is usually difficult. The classical Arakawa scheme preserves both energy and

enstrophy (mean square of the vorticity) for 2D incompressible Euler equation. This result

was generalized recently to a high order discontinuous Galerkin method [17]. A strong con-

vergence result is also obtained for this scheme [20] when the initial value of the vorticity is

merely square-integrable. Some important flows such as vortex patches belong to this class.

For general three dimensional flows, enstrophy is no longer a conserved quantity. Instead,

there is a conservation law for the helicity. Although the discovery of this conservation law

(by Moreau in 1961 [24]) is only a recent event, it has played an important role in modern

research on vortex dynamics for fluids and plasma. The helicity has an interesting topological

interpretation in terms of total circulations and Gauss linking number of two interlocking

vortex filaments. A comprehensive review of this subject can be found in Moffatt [22].

Although there is at present no numerical method preserving both helicity and energy, the

conservation of the energy and cross helicity for three dimensional MHD has already been

obtained in a recent work by the authors [19]. On a set of dual staggered grids, the classic

MAC scheme for Navier Stokes equation and Yee’s scheme for Maxwell equation is combined

with particular care on discretization of the nonlinear terms. The divergence free condition

for both the velocity field and magnetic field are maintained in the MAC-Yee scheme.

In this paper, we will first focus on three dimensional flows with coordinate symmetry.

Pipe flows and axisymmetric flows are two typical examples. For such symmetric flows, it
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is possible to introduce a generalized vorticity-stream formulation, thus the divergence free

constraint for the fluid velocity is trivially satisfied. Under this vorticity-stream formulation,

all the nonlinear terms (convection, vorticity stretching, geometric source, Lorentz force and

electro-motive force) for the Navier Stokes and MHD equation can be recast as Jacobians.

Associated with these Jacobians we then introduce a trilinear form equipped with a set of

permutation identities which leads naturally to the conservation of energy and helicities as

well as all the first moments for both the Navier Stokes and MHD equation. We then device

a recipe of preserving the permutation identities numerically and hence the energy and he-

licities. As an illustration, we implement a simple 2nd order finite difference scheme based

on centered difference in space and high order Runge Kutta in time. The scheme is very

efficient, since the nonlinears term are treated explicitly and a local vorticity boundary con-

dition, namely Thom’s formula [27, 7] is applied for time integration, the system essentially

decouples into several scalar equations. On the other hand, since the energy and helicities

are preserved exactly, there is no excess numerical viscosity introduced thus the scheme is

also very accurate. Another advantage of the scheme is the flexibility of choosing coordinate

system since our formulation is relatively coordinate-independent. Mesh refinement near the

boundary can thus be built into the equation by stretching the coordinate with essentially

no extra cost. Our treatment of the nonlinear terms can be generalized to higher order finite

difference, finite element and spectral methods in a similar fashion.

In practical implementations of the scheme, there is another difficulty that needs to be

resolved. The most natural coordinate systems associated with these symmetric flows often

exhibits coordinate singularities such as the symmetry axis in cylindrical coordinate systems

and the origin in polar coordinates. Usually these coordinate singularities are treated with

artificial pole conditions to insure the stability of the scheme and the smoothness of the

solution. Here we overcome this difficulty by shifting the grid points half grid length away

from the singularity. Remarkably, the permutation identities and therefore the energy and

helicity identities remain valid even in the presence of the pole singularity for axisymmetric

flows. The validity of the permutation idenetities gives more than just the conservation of

energy and helicities. We give a very simple and elementary error estimate based on the

permutation idenetities and local truncation error analysis.

The rest of this paper is organized as follows: In section 2, we recall the energy and
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helicity identities first for general 3D flows. In section 3, we introduce the generalized

vorticity-stream formulation for symmetric flows and derive the expression of the nonlinear

trems as Jacobians. In section 4, we introduce the permutation identities for the Jacobian and

rederive the energy and helicity identities for Navier Stokes and MHD from these permutation

identities. In section 5, we devise our numerical scheme by decretizing the nonlinear terms

in such a way that the permutation identities are preserved numerically. We also show how

to handle the pole singularity and how to impose the physical boundary conditions that

preserve the energy and helicity identities. Finally we give some numerical examples in

section 6 and the error analysis in the Appendix.

2 Energy and Helicity Conservation Laws for 3D Flows

For D ⊆ R3 with boundary ∂D, the incompressible Navier-Stokes equation can be written

as:
ut + ω × u+∇p̃ = −ν∇× ω (momentum)

∇ · u = 0 (incompressibility)
u|∂D = 0 (no-slip B.C.)

(2.0.1)

where p̃ = p+ |u|2/2 is the total pressure.

In this form, (2.0.1) involves only elementary grad, div, curl and the cross product of

vector fields. Thus (2.0.1) is intrinsic and suitable to work with in any curvilinear orthogonal

coordinate system. This gives us the freedom to choose a convenient coordinate system that

fits the computational domain if necessary.

The energy identity follows easily from integration by parts the inner product of u with

(2.0.1):
d

dt

1

2

∫
D

|u|2 = −ν
∫
D

|ω|2 , (2.0.2)

It is also interesting to examine the time evolution of the quantity
∫
D
u ·ω, known as the

helicity. This quantity has an intrinsic topological interpretation of the flow. For example,

when the flow pattern is two knotted vortex tubes or vortex filaments, the helicity is then

equal to ±2nΦ1Φ2, where Φ1 and Φ2 are the circulation in the cross section of the vortex

tubes respectively, and n is the Gauss linking number [22]. For inviscid flow, this quantity is

invariant in time. Indeed, we take the curl on both sides of the momentum equation (2.0.1),

ωt +∇× (ω × u) = −ν∇×∇× ω , (2.0.3)
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or equivalently

(∂t + u · ∇)ω = (ω · ∇)u− ν∇×∇× ω . (2.0.4)

The first term in the right hand side is the vorticity stretching term and is well believed to

be the source of possible singularity formation in the flows. A simple computation leads to

the following equation

(∂t + u · ∇)(u · ω) +∇ · [(p̃− |u|2)ω] = ν(ω · 4u+ u · 4ω).

If ∂D(t) is any closed surface moving with the fluid on which the condition ν · ω|∂D(t) = 0

is satisfied, we have the following conservation laws,

d

dt

∫
D(t)

u · ω = ν

∫
D(t)

(ω · 4u+ u · 4ω) . (2.0.5)

When D(t) is taken as D, the no-slip boundary condition insures ν · ω|∂D = 0, and hence

we have the following global helicity conservation law

d

dt

1

2

∫
D

u · ω = −ν
∫
D

ω · (∇× ω) . (2.0.6)

3 Reformulation of Navier Stokes Equation for 3D Sym-

metric Flows

This paper is motivated by the work of R. Grauer and T. Sideris [12] in the numerical

search of possible singularities for the axisymmetric solutions of the Euler equation. For

axisymmetric flows, the velocity and the vorticity can be written as

u = (0, 0, u) +∇× (0, 0, ψ), ω = (0, 0, ω) +∇× (0, 0, u) , (3.0.1)

and the Euler equation reduces to

∂tu+ (ux∂x + ur∂r)u+ ur
r
u = 0 ,

∂tω + (ux∂x + ur∂r)ω − ur
r
ω = 1

r
∂x(u

2) ,

−4ψ + 1
r2ψ = ω .

(3.0.2)

There is a geometric singularity at r = 0 (the pole singularity). Handling this geometric

singularity is essential in the numerical search for possible singularities in axisymmetric solu-

tions of Navier Stokes equation. We will address the issue of numerical difficulties associated
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with the pole singularity in section 4. In [12], the authors observed the similarity between

(3.0.2) and the 2D Boussinesq equation and conducted a numerical simulation of the 2D

Boussinesq equation. This work has stimulate research interest in the numerical simulation

of 2D Boussinesq equation [8, 2].

3.1 Generalized Vorticity-Stream Formulation for Symmetric Flows

The formulation (3.0.1,3.0.2) can be generalized to three dimensional flows with coordinate

symmetry.

LetX = (x1, x2, x3) be the Cartesian coordinate system and Y = (y1, y2, y3) a curvilinear

orthogonal coordinate system with unit vectors (e1, e2, e3). Denote by hi, i = 1, 2, 3, the

local stretching factors given by dX =
∑

j hjdyjej. The 3 basic differential operators are

given by

∇f = (
1

h1

∂1f,
1

h2

∂2f,
1

h3

∂3f) (3.1.1)

∇·f =
1

h1h2h3

(∂1(h2h3f1) + ∂2(h1h3f2) + ∂3(h1h2f3)) (3.1.2)

∇× f =
1

h1h2h3

∣∣∣∣∣∣
h1e1 h2e2 h3e3

∂1 ∂2 ∂3

h1f1 h2f2 h3f3

∣∣∣∣∣∣ (3.1.3)

By symmetry, we mean that the physical domain is of the form D = Ω×R or D = Ω×S1,

that hi = hi(y1, y2), i = 1, 2, 3 and that the solutions are invariant under translation in the

y3 direction. For a symmetric incompressible velocity field u = u(y1, y2)

∇ · u =
1

h1h2h3

(∂1(h2h3u1) + ∂2(h3h1u2)) = 0 (3.1.4)

with u ·ν|∂Ω = 0, we can always introduce a potential ψ, the component of the stream vector

in the symmetry direction, such that

∂2 (h3ψ) = h2h3u1, ∂1 (h3ψ) = −h3h1u2, (3.1.5)

and we can write

u =

(
1

h3

∂2(h3ψ)

h2

,− 1

h3

∂1(h3ψ)

h1

, u

)
= (0, 0, u) +∇× (0, 0, ψ) . (3.1.6)
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Here u = u3 is the velocity component in the symmetry direction. For axisymmetric flows,

u is known as the swirling velocity. Direct computation leads to

∇×∇× (0, 0, ψ) = (0, 0,Lψ)

where

Lψ = − 1

h1h2

(
∂1

(
h2

h1h3

∂1(h3ψ)

)
+ ∂2

(
h1

h2h3

∂2(h3ψ)

))
(3.1.7)

Denote by ω = −Lψ, the vorticity component in the symmetry direction, it follows similarly

that

ω = (0, 0, ω) +∇× (0, 0, u) . (3.1.8)

We next introduce the following identity:

−Lψ = −4ψ + V ψ (3.1.9)

where 4 is the standard Laplacian in Ω:

4ψ =
1

h1h2h3

(
∂1

(
h2h3

h1

∂1ψ

)
+ ∂2

(
h1h3

h2

∂2ψ

))
= ∇ · ∇ψ (3.1.10)

and V is the geometric source term

V =
−1

h1h2

(
∂1

(
h2

h1h3

∂1h3

)
+ ∂2

(
h1

h2h3

∂2h3

))
= h34(

1

h3

) (3.1.11)

We remark here that the identity (3.1.9) plays an important role in the treatment of the pole

singularity in conjunction with our spatial discretization (5.2.3) below. In the axisymmetric

case, h3 = 0 on the axis of symmetry which poses difficulties in discretizing L. This difficulty

disappears with the equivalent operator4−V provided r = 0 is not a grid point. See section

5 for details.

Our next crucial observation is to write the nonlinear terms as Jacobians:

ω × u =

∣∣∣∣∣∣∣∣∣∣∣

e1 e2 e3

1
h3

∂2(h3u)
h2

− 1
h3

∂1(h3u)
h1

w

1
h3

∂2(h3ψ)
h2

− 1
h3

∂1(h3ψ)
h1

u

∣∣∣∣∣∣∣∣∣∣∣
=

(
w
h3

∂1(h3ψ)
h1
− u

h3

∂1(h3u)
h1

, w
h3

∂2(h3ψ)
h2
− u

h3

∂2(h3u)
h2

, 1
h2

3
(∂2(h3ψ)

h2

∂1(h3u)
h1
− ∂2(h3ψ)

h1

∂2(h3u)
h2

)
)
.
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(ω × u)3 =
1

h2
3

1

h1h2

J (h3u, h3ψ) , (3.1.12)

and

(∇× (ω × u))3

=
1

h1h2

∣∣∣∣∣∣
∂1 ∂2

ω∂1(h3ψ)
h3

− u∂1(h3u)
h3

ω∂2(h3ψ)
h3

− u∂2(h3u)
h3

∣∣∣∣∣∣
=

1

h1h2

(
∂1

(
ω

h3

)
∂2 (h3ψ)− ∂2

(
ω

h3

)
∂1 (h3ψ)− ∂1

(
u

h3

)
∂2 (h3ψ) + ∂2

(
u

h3

)
∂1 (h3u)

)

=
1

h1h2

J

(
ω

h3

, h3ψ

)
− 1

h1h2

J

(
u

h3

, h3u

)
Thus, we have the (ψ, u, ω) formulation of the Navier Stokes equation for the three dimen-

sional symmetric flow:

ut + 1
h2

3

1
h1h2

J (h3u, h3ψ) = ν(4− V )u ,

ωt + 1
h1h2

J
(
ω
h3
, h3ψ

)
= ν(4− V )ω + 1

h1h2
J
(
u
h3
, h3u

)
,

ω = −(4− V )ψ ,

(3.1.13)

Next, we come to the no-slip boundary condition u|Γ = 0. Clearly, the outer normal ν is

orthogonal to e3. Let us define τ = ν × e3 and we have

u · ν = ∂τ (h3ψ) = 0, u · τ = ∂ν(h3ψ) = 0, u · e3 = u = 0

When the cross section Ω is simply connected, the no-slip boundary condition takes the form:

u = 0, ψ = 0, ∂ν(h3ψ) = 0 on ∂Ω . (3.1.14)

4 Permutation identities and Conservation Laws Re-

visited

The Jacobian J(a, b) = ∇a · ∇⊥b satisfies some nice identities. We can rewrite the Jacobian

as

∇a · ∇⊥b =
1

3

{
∇a · ∇⊥b+∇ · (a∇⊥b) +∇⊥ · (b∇a)

}
(4.0.1)
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We define the trilinear form:

T (a, b, c) =
1

3

∫
Ω

[c(∇a · ∇⊥b) + a(∇b · ∇⊥c) + b(∇c · ∇⊥a)] , (4.0.2)

the following permutation identities

T (a, b, c) = T (b, c, a) = T (c, a, b), T (a, b, c) = −T (b, a, c) , (4.0.3)

leads naturally to the conservation laws for energy and helicity, see section 5 below. From

(4.0.1) and (4.0.2), it follows that∫
Ω

cJ(a, b) = T (a, b, c)−
∫
∂Ω

c(a∂τb− b∂τa) . (4.0.4)

Proposition 1 Assume a, b, c are sufficient smooth and c(a∂τb−b∂τa) = 0 on the boundary.

Then ∫
Ω

cJ(a, b) = T (a, b, c) . (4.0.5)

The assumption in Proposition 1 is valid on the physical boundary provided at least one

of a, b or c is either ψ or u. It is also valid on the axis of rotation for axisymmetric flows as

all dependent variables are the swirling components of axisymmetric vector fields and satisfy

odd extension across the axis of rotation. See also (5.2.4).

Next we express the energy and helicity identity in terms of u and ω. We first define the

weighted L2 and H1 inner products

〈φ1, φ2〉 =

∫
Ω

h1h2h3φ
1(y1, y2)φ2(y1, y2) dy1dy2 , (4.0.6)

and

[φ1, φ2] = 〈 1

h1

∂1φ
1,

1

h1

∂1φ
2〉+ 〈 1

h2

∂2φ
1,

1

h2

∂2φ
2〉+ 〈φ1, V φ2〉 . (4.0.7)

It is useful to point out here that 〈φ1, (−4 + V )φ2〉 = [φ1, φ2] provided either φ1 = 0 or

∂νφ
2 = 0 on ∂Ω.

Since u and hi are independent of y3, it suffice to consider the energy and helicity identities

on the cross section Ω:∫
Ω

|u|2h1h2h3dy1dy2 = 〈

 0
0
u

+∇×

 0
0
ψ

 ,

 0
0
u

+∇×

 0
0
ψ

〉
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= 〈

 0
0
u

 ,

 0
0
u

〉+ 〈∇ ×

 0
0
ψ

 ,∇×

 0
0
ψ

〉 = 〈u, u〉+ [ψ, ψ]

Similarly, ∫
Ω

|ω|2h1h2h3dy1dy2 = [u, u] + 〈ω, ω〉

∫
Ω

u · ωh1h2h3dy1dy2 = 〈

 0
0
u

+∇×

 0
0
ψ

 ,

 0
0
ω

+∇×

 0
0
u

〉
= 〈

 0
0
u

 ,

 0
0
ω

〉+ 〈∇ ×

 0
0
ψ

 ,∇×

 0
0
u

〉
Since u = 0 on the physical boundary, we can integrate by parts the second term to get

〈∇ ×

 0
0
ψ

 ,∇×

 0
0
u

〉 = 〈∇ ×∇×

 0
0
ψ

 ,

 0
0
u

〉 = 〈

 0
0
ω

 ,

 0
0
u

〉
Therefore ∫

Ω

u · ωh1h2h3dy1dy2 = 2〈u, ω〉

and∫
D

ω·(∇×ω) = 〈

 0
0
ω

+∇×

 0
0
u

 ,

 0
0

−(4− V )u

+∇×

 0
0
ω

〉 = [u, ω]−〈ω, (4−V )u〉

We conclude with the energy and helicity identity in terms of u and ω:

d

dt

1

2
(〈u, u〉+ [ψ, ψ]) + ν([u, u] + 〈ω, ω〉) = 0 . (4.0.8)

and
d

dt
〈u, ω〉+ ν([u, ω]− 〈ω,42u〉) = 0 . (4.0.9)

Here we give an alternative derivation of (4.0.8, 4.0.9). We take the weighted inner

product of the first equation in (2.0.1) with υ, the second with ϕ to get

〈υ, ∂tu〉+ T (h3u, h3ψ, υ/h3) = ν〈υ, (4− V )u〉

[ϕ, ∂tψ] + T (ω/h3, h3ψ, h3ϕ) = ν〈ϕ, (4− V )ω〉+ T (u/h3, h3u, h3ϕ)

〈ξ, ω〉 = [ξ, ψ]

(4.0.10)
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In view of (4.0.10), the conservation laws (4.0.8, 4.0.9) follow easily from the permutation

identities (4.0.3) by taking (υ, ϕ) = (u, ψ) and (ω, u) respectively. We will derive a discrete

analogue of the permutation identities (4.0.3) with a proper discretization of the nonlinear

terms and implementation of boundary conditions. The discrete analogue of (4.0.8, 4.0.9)

then follows as a direct consequence. See (5.1.15, 5.1.16, 5.1.17).

4.1 3D MHD Equations

The 3D dimensional MHD equation

ut + ω × u+∇p = −ν∇× ω + α× b
∇ · u = 0
bt = −η∇× +∇× (u× b)
ω = ∇× u,  = ∇× b,

(4.1.1)

with the no-slip and perfectly conducting wall conditions

u = 0, × ν = 0 on ∂D (4.1.2)

shares some similarity with the Navier Stokes equation in the structure of the nonlinear

terms. Here u is the fluid velocity, ω is the vorticity, p is the total pressure, b is the

magnetic field and  is the electric current density. The parameters ν−1, η−1 and α−1/2 are

usually referred to as the fluid Reynolds number, the magnetic Reynolds number and the

Alfven number respectively.

The conservation of energy and cross helicity follows easily from elementary calculations:∫
Ω

u · [ut + ω × u+∇p] =

∫
Ω

u · [−ν∇× ω + α× b] (4.1.3)

α

∫
Ω

b · bt = α

∫
Ω

b · [−η∇× +∇× (u× b)] (4.1.4)

and the energy identity follows:

d

dt

1

2

∫
Ω

(|u|2 + α|b|2) = −ν
∫

Ω

|ω|2 − αη
∫

Ω

||2 (4.1.5)

Similarly, ∫
Ω

b · [ut + ω × u+∇p] =

∫
Ω

b · [−ν∇× ω + α× b] (4.1.6)
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∫
Ω

u · bt =

∫
Ω

u · [−η∇× +∇× (u× b)] (4.1.7)

and there follows the conservation of cross helicity:

d

dt

∫
Ω

u·b+

∫
∂Ω

pb · ν = −ν
∫

Ω

b · (∇× ω)− η
∫

Ω

ω ·  (4.1.8)

The conservation of magnetic helicity involves the vector potential. By rewriting the

Faraday equation as

∂tb+∇× e = 0, e = η− u× b, (4.1.9)

it is clear that the Faraday equation admits a potential formulation given by

at = −e+∇χ, a|t=0 = a0, ∇× a0 = b0 (4.1.10)

with an arbitrary gauge function χ. Therefore

∂t(b−∇× a) = 0, or b = ∇× a (4.1.11)

If we further restrict χ|∂Ω = 0, then the magnetic helicity M = 1
2

∫
Ω
a · b is gauge invariant

and
d

dt
M =

1

2

∫
Ω

(at · b+ a · bt) =
1

2

∫
Ω

[(−e+∇χ) · b− a · (∇× e)]. (4.1.12)

After integration by parts using the boundary conditions χ = 0 and e× ν = 0, we have

1

2

∫
Ω

[(−e+∇χ) · b− a · (∇× e)] = −
∫

Ω

e · b (4.1.13)

Thus the conservation of magnetic helicity follows

d

dt
M = −

∫
Ω

(b× u+ η) · b = −η
∫

Ω

b ·  (4.1.14)

For symmetric MHD, we can similarly write

u = (0, 0, u) +∇× (0, 0, ψ)

ω = (0, 0, ω) +∇× (0, 0, u), ω = −(4− V )ψ

b = (0, 0, b) +∇× (0, 0, a)

 = (0, 0, ) +∇× (0, 0, b),  = −(4− V )a

(4.1.15)
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and reformulate all the nonlinear terms as Jacobians:

(ω × u)3 = 1
h2

3

1
h1h2

J (h3u, h3ψ)

(× b)3 = 1
h2

3

1
h1h2

J (h3b, h3a)

(u× b)3 = 1
h2

3

1
h1h2

J (h3ψ, h3a)

(4.1.16)

(∇× (ω × u))3 = 1
h1h2

J
(
ω
h3
, h3ψ

)
− 1

h1h2
J
(
u
h3
, h3u

)
(∇× (× b))3 = 1

h1h2
J
(


h3
, h3a

)
− 1

h1h2
J
(
b
h3
, h3b

)
(∇× (u× b))3 = 1

h1h2
J
(
u
h3
, h3a

)
− 1

h1h2
J
(
b
h3
, h3ψ

) (4.1.17)

and the 3D symmetric MHD takes the form:

∂tu+ 1
h2

3

1
h1h2

J (h3u, h3ψ) = ν(4− V )u+ α
h2

3

1
h1h2

J (h3b, h3a)

∂tω + 1
h1h2

J
(
ω
h3
, h3ψ

)
− 1

h1h2
J
(
u
h3
, h3u

)
= ν(4− V )ω + α

h1h2
J
(


h3
, h3a

)
− α

h1h2
J
(
b
h3
, h3b

)
ω = −(4− V )ψ

∂ta = η(4− V )a+ 1
h2

3

1
h1h2

J (h3ψ, h3a)

∂tb = η(4− V )b+ 1
h1h2

J
(
u
h3
, h3a

)
− 1

h1h2
J
(
b
h3
, h3ψ

)
 = −(4− V )a

(4.1.18)

where we have chosen the zero gauge χ = 0 for convenience.

On a simply connected Ω, the perfectly conducting wall conditions × ν = 0 is given by

 = 0, ∂ν(h3b) = 0 on ∂Ω (4.1.19)

Since a is a computational variables, it is convenient to take the alternative form of  = 0 in

terms of a, namely ∂ta = 0 which follows easily from the no-slip condition and the Faraday

equation. Therefore we have the boundary condition for the symmetric MHD:

u = 0, ψ = 0, ∂ν(h3ψ) = 0, ∂ta = 0, ∂ν(h3b) = 0 on ∂Ω (4.1.20)

This is also consistent with the boundary constraint ∂t(b·ν) = 0 which is a direct consequence

of the Faraday equation.
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We can similarly express the conservation laws for symmetric MHD (4.1.5, 4.1.8, 4.1.14)

in terms of the computational variables by

d

dt

1

2
(〈u, u〉+ [ψ, ψ] + α〈b, b〉+ α[a, a]) + ν([u, u] + 〈ω, ω〉) + ηα([, ] + 〈b, b〉) = 0 (4.1.21)

d
dt

(〈u, b〉+ 〈ω, a〉)

= ν(〈b, (4− V )u〉+ 〈a, (4− V )ω〉) + αη ([u, b] + 〈ω, (4− V )u〉)

+α
3

∫
∂Ω

(b2∂τ (h3a)− ab∂τ (h3b)) ds

(4.1.22)

and
d

dt
〈a, b〉+ η[a, b] = 0. (4.1.23)

5 Finite Difference Scheme and Axisymmetric Flows

5.1 Finite Difference Method, Discrete Permutation Identities,
and Energy and Helicity Conservation Laws

With the standards notation:

D1φ(y1, y2) =
φ(y1 + ∆y1/2, y2)− φ(y1 −∆y1/2, y2)

∆y1

. (5.1.1)

D̃1φ(y1, y2) =
φ(y1 + ∆y1, y2)− φ(y1 −∆y1, y2)

2∆y1

. (5.1.2)

∇̃h =

(
D̃1

D̃2

)
, ∇̃⊥h =

(
−D̃2

D̃1

)
, (5.1.3)

the finite difference approximation of 4 and the Jacobians are given by

4hψ =
1

h1h2h3

(
D1

(
h2h3

h1

D1ψ

)
+D2

(
h1h3

h2

D2ψ

))
(5.1.4)

and

Jh(f, g) =
1

3

{
∇̃hf · ∇̃⊥h g + ∇̃h · (f∇̃⊥h g) + ∇̃⊥h · (g∇̃hf)

}
(5.1.5)

Altogether, we have our finite difference approximation of Navier Stokes equation:

∂tu+ 1
h2

3

1
h1h2

Jh (h3u, h3ψ) = ν(4h − V )u

∂tω + 1
h1h2

Jh

(
ω
h3
, h3ψ

)
= ν(4h − V )ω + 1

h1h2
Jh

(
u
h3
, h3u

)
ω = (−4h + V )ψ

(5.1.6)
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With the discretization given by (5.1.4, 5.1.5), we can easily recover the permutation identi-

ties (4.0.3) and hence preserve the energy and helicity identities numerically. To see this, let

us first look at the quasi-2D flow with Ω = R2 or T 2. We begin with the following identity:

N−1∑
j=1

fj (gj+1 − gj−1) = −
N−1∑
j=1

(fj+1 − fj−1) gj + fN−1gN + fNgN−1 − f0g1 − f1g0 (5.1.7)

When there is no boundary contribution, we can simply write (5.1.7) as∑
j

fj (gj+1 − gj−1) = −
∑
j

(fj+1 − fj−1) gj (5.1.8)

and hence

∆y1∆y2

∑
j

∑
i

c∇̃h · (a∇̃⊥h b) = −∆y1∆y2

∑
i,j

a∇̃hc · ∇̃⊥h b (5.1.9)

∆y1∆y2

∑
i

∑
j

c∇̃⊥h · (b∇̃ha) = −∆y1∆y2

∑
i,j

b∇̃⊥h c · ∇̃ha (5.1.10)

Therefore∑
i,j

ci,jJh(a, b)i,j =
1

3

∑
i,j

(
c∇̃ha · ∇̃⊥h b+ a∇̃hb · ∇̃⊥h c+ b∇̃hc · ∇̃⊥h a

)
i,j
≡ Th(a, b, c) .

(5.1.11)

and the discrete analogue of the permutation identity (4.0.3) follows.

As to the viscous terms, we define the weighted inner products by

〈φ, ψ〉h =
∑
i,j

(h1h2h3φψ)i,j ∆y1∆y2 (5.1.12)

[φ, ψ]h =
∑
i,j

(
h2h3

h1

(D1φ)(D1ψ)

)
i−1/2,j

∆y1∆y2

+
∑
i,j

(
h1h3

h2

(D2φ)(D2ψ)

)
i,j−1/2

∆y1∆y2

+〈φ, V ψ〉h

(5.1.13)

It is easy to see that

〈φ,4hψ〉h = −[φ, ψ]h (5.1.14)

when there is no boundary terms involved.
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Upon taking the weighted inner product of the first equation in (5.1.6) with υ, the second

with ϕ, it follows that

〈υ, ∂tu〉h + Th(h3u, h3ψ, υ/h3) = ν〈υ, (4h − V )u〉h

[ϕ, ∂tψ]h + Th(ω/h3, h3ψ, h3ϕ) = ν〈ϕ, (4h − V )ω〉h + Th(u/h3, h3u, h3ϕ)

〈ξ, ω〉h = [ξ, ψ]h

(5.1.15)

and we get the discrete energy identity

d

dt

1

2
(〈u, u〉h + [ψ, ψ]h) + ν([u, u]h + 〈ω, ω〉h) = 0 (5.1.16)

by taking υ = u, ϕ = ψ in (5.1.15). Also the discrete helicity identity

d

dt
〈u, ω〉h + ν([u, ω]h − 〈ω, (4h − V )u〉h) = 0 (5.1.17)

follows by taking υ = ω, ϕ = u.

Remark 1 (a) In the 2D case, the approximation Jh(a, b) is equivalent to the classical

Arakawa scheme [1].

(b) A straight forward generalization to finite element and spectral Galerkin method is to

define the discrete approximation of the nonlinear term Jh(a, b) through its pairing (the

weighted inner product) with the test function c by

〈c, Jh(a, b)〉 ≡ T (a, b, c)

The permutation identities are preserved and hence the energy and helicities. The

details will be reported elsewhere.

In the next subsection, we proceed with the treatment of the pole singularity in axisym-

metric flow.

5.2 Polar Coordinate System and the Pole Singularity

For axisymmetric flows, the cylindrical coordinate system (y1, y2, y3) = (x, r, θ) with r2 =

y2 + z2 and θ = arctan(z/y) is a natural one. In this case, we have (h1, h2, h3) = (1, 1, r) and
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the Navier Stokes equation can be written as

ut + 1
r2J (ru, rψ) = ν(4− 1

r2 )u ,

ωt + J
(
ω
r
, rψ
)

= ν(4− 1
r2 )ω + J

(
u
r
, ru
)
,

ω = (−4+ 1
r2 )ψ ,

(5.2.1)

In [3], it is shown that the only possible singularity for axisymmetric flow of Navier Stokes

equation is on the axis. Therefore it is desirable to have local mesh refinement near the axis.

This is achievable by a simple stretching of coordinate system. For example, take

(y1, y2, y3) = (x, s, θ)

with s = r1/2 = (y2 + z2)1/4. The stretching factor now becomes (h1, h2, h3) = (1, 2s, s2) and

the Navier Stokes equation reads

ut + 1
2s5
J (s2u, s2ψ) = ν(4− 1

s4
)u ,

ωt + 1
2s
J
(
ω
s2
, s2ψ

)
= ν(4− 1

s4
)ω + 1

2s
J
(
u
s2
, s2u

)
,

ω = (−4+ 1
s4

)ψ ,

(5.2.2)

In either (5.2.1) or (5.2.2), the Navier Stokes equation has pole singularity 1/r (1/s,

respectively) at the axis of rotation, a simple and effective treatment for finite difference

scheme is to shift the grids half grid size off the axis to avoid placing the grid point on the

pole.

y2(j) = (j − 1

2
)∆y2, j = 0, 1, 2, · · · (5.2.3)

That is, rj = (j − 1
2
)∆r, j = 0, 1, 2, · · · in (x, r, θ) coordinates and sj = (j − 1

2
)∆s, j =

0, 1, 2, · · · in (x, s, θ) coordinates.

Since u, ψ, ω are the swirling components of u,ψ,ω, they satisfy the reflection boundary

condition, namely, odd extension across the axis of rotation:

u(i, 0) = −u(i, 1), ψ(i, 0) = −ψ(i, 1), ω(i, 0) = −ω(i, 1), (5.2.4)

and

h1(0, j) = h1(1, j), h2(0, j) = h2(1, j), h3(0, j) = h3(1, j), (5.2.5)
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for the local stretching factors.

If we denote by j the index in the direction parallel to the axis, it follows from (5.1.7)

that ∞∑
j=1

fj(gj+1 − gj−1) = −
∞∑
j=1

gj(fj+1 − fj−1)− (f0g1 + g0f1). (5.2.6)

When we repeat the procedure outlined in (5.1.8-5.1.11), we will encounter the boundary

contribution at the pole:
∑

i(fi,0gi,1 + gi,0fi,1), with f = c and g = bD̃xa− aD̃xb. In view of

the reflection boundary condition (5.2.4)

fi,0 = −fi,1, gi,0 = gi,1. (5.2.7)

The boundary contribution at the pole drops out automatically and consequently the per-

mutation identities is valid even in the presence of the pole singularity. Since r 1
2

= s 1
2

= 0,

it follows that (5.1.14) remains valid for axisymmetric flow in view of following identity

∞∑
j=1

fj(gj+1/2 − gj−1/2) = −
∞∑
j=1

′(fj − fj−1)gj−1/2 −
1

2
(f1 + f0)g1/2 (5.2.8)

where ∞∑
j=1

′ =
1

2

∑
j=1

+
∞∑
j=2

As a consequence, the discrete energy and helicity identity (5.1.16, 5.1.17) remain valid

for axisymmetric flow in the whole space.

5.3 Treatment of Physical Boundary Conditions

In order to preserve the conservation laws for the energy and helicity in the presence of the

physical boundary, the no-slip boundary condition needs to be realized in a proper way. We

consider the flow confined in a cylinder {xmin < x < xmax, 0 < r < rmax}, and let i be the

index in the axial direction. From (5.1.7)

M−1∑
i=1

fi (gi+1 − gi−1) = −
M−1∑
i=1

(fi+1 − fi−1) gi + fM−1gM + fMgM−1 − f0g1 − f1g0, (5.3.1)

it follows that if we place the physical boundary in the middle of grid points

x 1
2

= xmin, · · · , xM− 1
2

= xmax, rN− 1
2

= rmax (5.3.2)
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a second order approximation for two of the no-slip boundary condition

ψ = ∂νψ = 0

is realized by simply imposing

ψ0,j = ψ1,j = 0, ψM−1,j = ψM,j = 0, ψi,N−1 = ψi,N = 0 (5.3.3)

Together with

u0,j + u1,j = 0, uM−1,j + uM,j = 0, ui,N−1 + ui,N = 0 (5.3.4)

as a second order approximation of the third no slip condition u = 0.

It is also easy to see that the boundary contributions in the permutation identity drops

out. Indeed, by introducing the convolution operator

(f ∗ g)i− 1
2

=
1

2
(fi−1gi + figi−1)

we can write (5.3.1) as

M−1∑
i=1

fi (gi+1 − gi−1) = −
M−1∑
i=1

(fi+1 − fi−1) gi + 2(f ∗ g)M− 1
2
− 2(f ∗ g) 1

2
(5.3.5)

therefore

∆x∆r
∑
j

M−1∑
i=1

(
cD̃x(aD̃rb)

)
i,j

= −∆x∆r
∑
j

M−1∑
i=1

(
a(D̃xc)(D̃rb)

)
i,j

+ ∆r

(∑
j

(c ∗x aD̃rb)M− 1
2
,j − (c ∗x aD̃rb) 1

2
,j

)
(5.3.6)

where ∗x denotes convolution in x direction. Similarly,

∆x∆r
∑
i

N−1∑
j=1

(
cD̃r(aD̃xb)

)
i,j

= −∆x∆r
∑
i

N−1∑
j=1

(
a(D̃rc)(D̃xb)

)
i,j

+ ∆x

(∑
i

(c ∗r aD̃xb)i,N− 1
2
− (c ∗r aD̃xb)i, 1

2

)
(5.3.7)
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From (5.3.6) and (5.3.7) it follows that

∆x∆r
∑
i,j

c∇̃h · (a∇̃⊥h b) = −∆x∆r
∑
i,j

a∇̃hc · ∇̃⊥h b−∆yτ
∑
Γh

(
c ∗ν (aD̃τb)

)
(5.3.8)

∆x∆r
∑
i,j

c∇̃⊥h · (b∇̃ha) = −∆x∆r
∑
i,j

b∇̃⊥h c · ∇̃ha+ ∆yτ
∑
Γh

(
c ∗ν (bD̃τa)

)
(5.3.9)

where for brevity, we have used ∗ν to denote the convolution in the normal direction and yτ

the variable in the tangential direction.

We have the discrete analogue of (4.0.4):∑
i,j

cJh(a, b)∆x∆r =
∑
i,j

(c∇̃ha · ∇̃⊥h b+ a∇̃hb · ∇̃⊥h c+ b∇̃hc · ∇̃⊥h a)∆x∆r

+1
3

∑
Γh

(
c ∗ν (aD̃τb− bD̃τa)

)
∆yτ

(5.3.10)

For the discrete energy identity (5.1.16), the boundary contribution from the 3 nonlinear

terms
1

3

∑
Γh

(
c ∗ν (aD̃τb− bD̃τa)

)
(5.3.11)

corresponds to (a, b, c) = (h3u, h3ψ, u/h3), (ω/h3, h3ψ, h3ψ) and (u/h3, h3u, h3ψ) respec-

tively. From (5.3.3), the convolutions involving ψ drop out automatically. For the same

reason, the only boundary contribution from the nonlinear terms in the derivation of the

discrete helicity identity corresponds to (a, b, c) = (u/h3, h3u, h3u). This term is also identi-

cally zero since on r = rmax, we have

(aD̃τb− bD̃τa) = (uD̃xu− uD̃xu) = 0 on j = N − 1, N

while on x = xmin and x = xmax,(
c ∗ν (aD̃τb

)
= r

(
u ∗x (u/rD̃r(ru)

)
= 0

and (
c ∗ν (bD̃τa)

)
= r

(
u ∗x ruD̃r(u/r))

)
= 0

from (5.3.4).

In the mean time, we have the following Lemma concerning the boundary contributions

for the viscous term
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Lemma 1 If either φ1 satisfies the homogeneous Dirichlet boundary condition

φ1
0,j + φ1

1,j = 0, φ1
M−1,j + φ1

M,j = 0, φ1
i,N−1 + φ1

i,N = 0

or φ2 satisfies the homogeneous Neumann boundary condition

φ2
0,j = φ2

1,j, φ2
M−1,j = φ2

M,j, φ2
i,N−1 = φ2

i,N

at the physical boundary, then

〈φ1, (4h − V )φ2〉h = −[φ1, φ2]h (5.3.12)

The proof follows straight forward from the following identity

M−1∑
i=1

fi(gi+1/2 − gi−1/2) = −
M∑
i=1

′(fi − fi−1)gi−1/2 +
1

2
(fM−1 + fM)gM−1/2 −

1

2
(f1 + f0)g1/2

(5.3.13)

with
M∑
i=1

′ =
1

2

∑
i=1

+
M−1∑
i=2

+
1

2

∑
i=M

From the analysis above, we see that the energy and helicity identities (5.1.16) and

(5.1.17) remains valid with the physical boundary condition (5.3.3, 5.3.4).

In the case of MHD equation, boundary contribution (5.3.11) does not drop out auto-

matically. A simple remedy is to add a correction term to the Jacobians at points (1, j),

(M − 1, j) and (i, N − 1). Since these points are O(∆x) and O(∆r) from the boundary, this

correction is of O(∆x2 + ∆r2) and the resulting scheme is still second order consistent with

the equation. However, this approach is quite artificial and we do not favor it so we omit

the details.

We are unable to find a simple and local numerical boundary condition that preserves

the MHD energy and helicity identities in the presence of physical boundaries.

In practice, a more convenient way of realizing (4.1.20) is to place the grid points on the

physical boundary as is usually done. In other words, we put x = xmin on i = 0, x = xmax

on i = M and r = rmax on j = N (The pole r = 0 is still located at j = 1
2
). The u = ψ = 0

condition are given by

ψ0,j = ψM,j = ψi,N = 0, (5.3.14)
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u0,j = uM,j = ui,N = 0, (5.3.15)

The boundary condition ∂ν(h3ψ) = 0, or equivalently ∂νψ = 0 since ψ = 0 on the boundary,

can be realized as

ψ−1,j = ψ1,j, ψM+1,j = ψM−1,j, ψi,N+1 = ψi,N−1 (5.3.16)

Similarly

∂ta0,j = 0, ∂taM,j = 0, ∂tai,N = 0 (5.3.17)

(h3b)−1,j = (h3b)1,j, (h3b)M+1,j = (h3b)M−1,j, (h3b)i,N+1 = (h3b)i,N−1 (5.3.18)

The boundary conditions (5.3.16, 5.3.18) uniquely determines the values of ψ and b on the

ghost points (−1, j), (M + 1, j) and (i, N + 1). The vorticity boundary condition can be

easily derived from (5.3.16), known as Thom’s formula:

ω0,j =
2ψ1,j

(∆x)2
, (5.3.19)

In this setting, the active computational variables are u, ω and a at interior points and b at

interior and boundary points.

Notice that the vorticity boundary condition for (5.3.2) and (5.3.3) corresponds to

ω1,j =
ψ2,j

(∆x)2
, (5.3.20)

(5.3.20) differs from Thom’s formula by a factor of 2, also known as Fromm’s formula. If

the grid points were placed right on the boundary, Fromm’s formula reduces to a first order

scheme, see [25]. It is indeed a second order scheme when the boundary is placed between

the grid points (5.3.2). The numerical results are shown in Table 1 and a convergence proof

for this vorticity boundary condition will be given in a forthcoming paper.

When there is no physical boundary involved (the whole space problem), we can derive

the following estimate

‖u− uh‖+ ‖∇h(ψ − ψh)‖1 ≤ C(∆x2 + ∆r2
√
| log ∆r|) in x, r, θ coordinates

and

‖u− uh‖+ ‖∇h(ψ − ψh)‖1 ≤ C(∆x2 + ∆s2) in x, s, θ coordinates
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where ‖f‖2 = 〈f, f〉h and ‖f‖2
1 = [f, f ]h. This is done by a standard but somewhat lengthy

truncation error analysis together with a clever use of the permutation identity. See the

Appendix for detail.

Remark 2 It is worth noting that this numerical conservation property is very similar to

the classical Zabusky-Kruskal scheme for the KdV equation [16]:

ut + uux + 6uxxx = 0 (5.3.21)

in which the convection term is discretized as :

(uux)h =
1

3
uDxu+

2

3
Dx(u

2/2) =
uj−1 + uj + uj+1

3
Dxuj (5.3.22)

and it gives local conservation for both uj and u2
j .

Remark 3 The reformulation of nonlinear terms as Jacobian is also valid for nonorthogonal

z1 and z2 coordinates in the (y1, y2) plane, as long as they are both orthogonal to y3. The

Jacobian remains the same and the factor 1/(h2h3) is replaced by ∂(y1,y2)
∂(z1,z2)

. It is therefore

straight forward to generalize our scheme to non-orthogonal coordinate system and can be

applied to simulate flows in non-regular domain or combined with the moving mesh method.

This topic is currently under investigation.

6 Numerical Examples

Example 1: Accuracy check

We first check the accuracy of our scheme for axisymmetric Navier Stokes equation. We

setup the problem in a cylinder {0 < x < π, 0 < r < π} with ν = 0.001 and exact solution

ψ(x, r, t) = cos(t) sin(r) cos(r/2) sin(x)2, u(x, r, t) = cos(t) sin(r) sin(x)

The result at t = 3 is given in Table 1. Clear second order accuracy is verified.

Example 2: Orszag-Tang Vortex

In this example, we repeat the calculation done by Cordoba and Marliani in [6] for ideal

2D MHD equation (b = u = 0 in (4.1.18) ) using local mesh refinement technique. The

underlying scheme is the second order upwind scheme combined with projection method on
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mesh L2 error order L∞ error order

100× 128 3.0929E-4 — 5.8085E-4 —
200× 256 7.8090E-5 1.995 1.3717E-4 1.995

ψ 400× 512 1.9597E-5 1.997 3.9290E-5 1.998
800× 1024 4.9066E-6 1.999 1.0497E-5 1.999
1600× 2048 1.2274E-6 1.999 2.7118E-6 1.999

100× 128 6.1831E-5 — 4.9415E-4 —
200× 256 1.5371E-5 2.008 1.2108E-4 2.029

u 400× 512 3.8393E-6 2.001 3.0150E-5 2.006
800× 1024 9.5976E-7 2.000 7.5111E-6 2.005
1600× 2048 2.3995E-7 2.000 1.8774E-6 2.000

100× 128 3.0929E-4 — 5.8085E-4 —
200× 256 7.8090E-5 1.986 1.3717E-4 2.082

ω 400× 512 1.9597E-5 1.995 3.9290E-5 1.804
800× 1024 4.9066E-6 1.998 1.0497E-5 1.904
1600× 2048 1.2274E-6 1.999 2.7118E-6 1.953

Table 1: Errors and orders of accuracy for example 1.

the primitive variable for the fluids part and potential formulation for the magnetic part. The

initial data is given by a(x, y) = cos(x+1.4)+cos(y+2.0), ψ(x, y) = 1
3
[cos(2x+2.3)+cos(y+

6.2)] on a 2π periodic box. This configuration typically develops singularity-like structure

known as current sheets where the current density is observed to grow exponentially in

time and thickness shrinks at exponential rate as well. This problem is a good test on

the performance of the scheme by monitoring the growth of the maximum of the current

sheet as excessive numerical viscosity can easily smear out the current sheet. In [6], the

initial resolution is 2562 and adaptively refined on regions where the solution develops large

variation. At t = 2.7, the finest mesh corresponds to the resolution of 40962 grids.

As a comparison, we repeat the same calculation with fixed resolution 10242. The contour

plot of the current density  at t = 2.7 is shown in Fig 1, which agree well with the calculation

done in [6]. Fig 2 is a local close up view of the same plot and we see the strong current

sheet is well resolved with only 7-8 grid points across the sheet.

In addition, we plot the history of time evolution of the current sheet maximum against

the simulated result fit(t) reported in [6]. Compared with the same plot ([6], Fig 8) of the

fixed resolution calculation done there, we can see that our scheme is much less dissipative.

Overall, we can achieve the same resolution with about half the number of grids in each

25



space direction. (NOTE to referees: relevant pages of [6] attached)

For 2D MHD, the magnetic helicity is identically zero and
∫
a2 emerges as an additional

conserved quantity. This quantity is also preserved numerically by our scheme.

Example 3: Axisymmetric Flow in a Cylinder

We setup another test problem on a cylindrical domain 0 < x < 3, 0 < r < 3, with initial

data:

ψ(x, r) = 0, u(x, r) =
1

2r

(
1− tanh

(
100

(
(r − 1)2 + (x− 1.5)2 − 1/4

)))
and the no-slip condition. The initial configuration corresponds to a tube of flow in a circular

cross section region with uniform angular momentum and the flow outside is at rest. This

flow configuration induces a strong vortex sheet at the boundary of the circular region (see

Fig5). At t > 0, the flow closer to the axis is thus driven towards outside and generates

complicated flow patterns at later time. This situation is very similar to a rising bubble in

2D Boussinesq flow. The simulation is done with 15362 grids. We should mention here that

we can afford high resolution simulation on an ordinary desktop because of the combined

effect of the vorticity-stream formulation, explicit time integration of the nonlinear terms,

and the local boundary condition that effectively decouples the Navier Stokes equation into

2 scalar evolution equations.

Several contour plots of u are given in Fig 4 through Fig 9. The details of the complicated

flow structure is well captured.

7 Conclusions

For 3D symmetric flow, we reformulated all the nonlinear terms in Navier Stokes equation

and MHD in terms of Jacobian. The physical conservation laws for energy, helicity, etc.,

follow directly from the permutation identities associated with the Jacobian.

We designed a numerical scheme that preserves the permutation identities and hence

the energy and helicity numerically. This scheme is nonlinearly stable and free from excess

numerical viscosity, and hence is suitable for long time integration. This scheme also gives

a clean way of handling geometric singularities such as the rotation axis in axisymmetric

flows.
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The procedure is quite general. Any type of spatial discretization such as finite difference,

finite element, and spectral methods can be treated similarly by numerically realizing the

permutation identity (4.0.3). Local mesh refinement near the physical boundary can also

be incorporated into the scheme by stretching the coordinate accordingly at no extra cost.

Numerical evidence has demonstrated both efficiency and accuracy of the scheme.
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8 Appendix: Error Analysis for the (x, r, θ) Coordinate

System

Here we give a detail derivation of the truncation error analysis and error estimate of our

scheme for axisymmetric flows. For simplicity, we will only consider the whole space case in

(x, r, θ) coordinates with exact solution decaying at infinity. The proof for (x, s, θ) is quite

similar so we omit it.

The proof makes use of the discrete permutation identities for the nonlinear terms of

the error equation. In the presence of physical boundaries, extra care needs to be taken to

handle the boundary contributions for the permutation identities. This technique, known as

the Strang expansion, has been applied to the analysis of 2D flow, see Hou and Wetton [15],

Liu and Wang [18] for details.

For local truncation error analysis near the pole, it is necessary to identify smooth func-

tions in this coordinate system.

Proposition 2 The swirling component u of a smooth, axisymmetric vector field u admits

the following expansion for r small:

u(x, r) = C1(x)r + C3(x)r3 + C5(x)r5 +O(r6) (A.1)
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Proof: Since

u(x, y2, y3) = uθ(x, y2, y3) = −u2(x, y2, y3) sin θ + u3(x, y2, y3) cos θ,

we can expand u2 and u3 as Taylor series in y2 = r cos θ and y3 = r sin θ to get

uθ(x, y2, y3) =
6∑

k=1

rk−1Pk(x; cos θ, sin θ) +O(r6)

where Pk is a homogeneous polynomial of cos θ and sin θ with degree k. For axisymmetric

flows uθ(x, r cos θ, r sin θ) is independent of θ. It follows that Pk is a constant in θ. An easy

analysis shows that P1 = P3 = P5 = 0.

Lemma 2 Let (ψ, u, ω) be an exact solution of the axisymmetric Navier Stokes equation

(5.2.1) that decays sufficiently fast at infinity, then

ω = (−4h + V )ψ + r̂∆x2 + r̂−1∆r2

∂tu+
1

r2
Jh(ru, rψ) = ν(4h − V )u+ r̂∆x2 + r̂−1∆r2

∂tω + Jh

(ω
r
, rψ
)

= ν(4h − V )ω + Jh

(u
r
, ru
)

+ r̂∆x2 + r̂−1∆r2

where r̂n = O(rn) for r small and decays sufficiently fast at infinity.

Proof: We analyze the truncation error term by term. For the Laplacian operator, we have

4hψi,j =
(
D2
x +D2

r + D̃r
r

)
ψi,j

= 4ψi,j + r̂∆x2 +O(∂4
rψ∆r2 +O(1

r
∂3
rψ∆r2)

= 4ψi,j + r̂∆x2 + r̂−1∆r2

(A.2)

It is easy to verify that (A.2) is valid up to j = 1, or r = r1 = ∆r/2.

Next we analyze the nonlinear terms, for simplicity we omit the spatial index (i, j) from

here on.
1
r2Jh(ru, rψ) = 1

r2 ( D̃x(ru)D̃r(rψ)− D̃r(ru)D̃x(rψ)

+ D̃x(ruD̃r(rψ))− D̃r(ruD̃x(rψ))

+ D̃r(rψD̃x(ru))− D̃x(rψD̃r(ru)) )

(A.3)

For the first two terms, we have

D̃x(ru) = ∂x(ru) + r̂2∆x2 (A.4)

28



and

D̃r(rψ)i,j = ∂r(rψ)i,j +

{
O(∆r), j = 1
O(∆r2), j = 2, 3, · · · (A.5)

where we have used the local expansion (A.1) in (A.4) and (A.5). It follows that

D̃r(rψ)i,j = ∂r(rψ)i,j + r̂−1∆r2

A similar estimate holds for D̃r(ru) and D̃x(rψ) and we have

1

r2
D̃x(ru)D̃r(rψ) =

1

r2
∂x(ru)∂r(rψ) + r̂∆x2 + r̂−1∆r2 (A.6)

The degeneracy at j = 1 in (A.5) is a result of the even extension for the stretching factor

h3(r) = r with h3(r0) = h3(r1) = ∆r/2. One might suspect that this extension introduces

a kink at r = 0 and produces extra truncation error near the pole. In fact, it is easy to see

that D̃r(rψ) = ∂r(rψ) + r̂0∆r2 for all j had we chosen the odd extension for r: r0 = −r1.

However, the local truncation error in (A.5) is no worse than that of 4h as shown in (A.2).

Moreover, it is also comparable to those of D̃r(ruD̃x(rψ)) and D̃r(rψD̃x(ru)) regardless of

the extension of r. Indeed, we have

D̃r(ruD̃x(rψ))

= D̃r(ru∂x(rψ) +O(ru∂3
x(rψ)∆x2))

= ∂r(ru∂x(rψ)) + r̂∆r2 + r̂3∆x2

and similarly

D̃r(rψD̃x(ru)) = ∂r(rψ∂x(ru)) + r̂∆r2 + r̂3∆x2

The remaining terms in (A.3) can be easily estimated by

D̃x(ruD̃r(rψ)) = D̃x

(
ru
(
∂r(rψ) + r̂∆r2

))
= ∂x(ru∂r(rψ)) + r̂∆r2 + r̂3∆x2 (A.7)

and

D̃x(rψD̃r(ru)) = ∂x(rψ∂r(ru)) + r̂∆r2 + r̂3∆x2 (A.8)

In summary, we have

1

r2
Jh(ru, rψ) =

1

r2
J(ru, rψ) + r̂∆x2 + r̂−1∆r2 (A.9)
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Similarly, we can estimate Jh
(
ω
r
, rψ
)

as follows:

Jh
(
ω
r
, rψ
)

= D̃x

(
ω
r

)
D̃r(rψ)− D̃r

(
ω
r

)
D̃x(rψ)

+ D̃x

(
ω
r
D̃r(rψ)

)
− D̃r

(
ω
r
D̃x(rψ)

)
+ D̃r

(
rψD̃x(

ω
r
)
)
− D̃x

(
rψD̃r(

ω
r
)
) (A.10)

For the first term in (A.10), we have

D̃x

(ω
r

)
= ∂x

(ω
r

)
+ r̂0∆x2, (A.11)

D̃r(rψ) = ∂r(rψ) + r̂−1∆r2, (A.12)

therefore
D̃x

(
ω
r

)
D̃r(rψ) =

(
∂x
(
ω
r

)
+ r̂0∆x2

)(
∂r(rψ) + r̂−1∆r2

)
= ∂x

(
ω
r

)
∂r(rψ) + r̂∆x2 + r̂−1∆r2

(A.13)

Similarly, the second term can be estimated as

D̃r

(ω
r

)
= ∂r

(ω
r

)
+ r̂−3∆r2 (A.14)

D̃x(rψ) = ∂x(rψ) + r̂2∆x2 (A.15)

and

D̃r

(ω
r

)
D̃x(rψ) = ∂x(rψ)∂r

(ω
r

)
+ r̂∆x2 + r̂−1∆r2 (A.16)

The remaining terms in (A.10) follow similarly:

D̃x

(
ω
r
D̃r(rψ)

)
= D̃x

(
ω
r

(
∂r(rψ) + r̂−1∆r2

))
= (∂x + ∆x2∂3

x)
(
ω
r
∂r(rψ) + r̂−1∆r2

)
= ∂x

(
ω
r
∂r(rψ)

)
+ r̂∆x2 + r̂−1∆r2

(A.17)

D̃r

(
ω
r
D̃x(rψ)

)
= D̃r(ω∂xψ + r̂2∆x2)

= ∂r(ω∂xψ) + r̂∆x2 + r̂−1∆r2
(A.18)

D̃r

(
rψD̃x(

ω
r
)
)

= D̃r

((
rψ
(
∂x

ω
r

))
+ r̂0∆x2

)
= ∂r

(
rψ(∂x

ω
r
)
)

+ r̂∆x2 + r̂−1∆r2
(A.19)

D̃x

(
rψD̃r(

ω
r
)
)

= D̃x

(
rψ
(
∂r

ω
r

)
+ r̂−1∆r2

)
= ∂x

(
rψ∂r

(
ω
r

))
+ r̂∆x2 + r̂−1∆r2

(A.20)
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In Summary, we have

Jh

(ω
r
, rψ
)

= J
(ω
r
, rψ
)

+ r̂∆x2 + r̂−1∆r2 (A.21)

The same argument also leads to

Jh

(u
r
, ru
)

= J
(u
r
, ru
)

+ r̂∆x2 + r̂−1∆r2 (A.22)

This completes the proof of Lemma 2.

To perform the energy estimate for the error, we first recall the weighted inner products

(5.1.12) and (5.1.13) in (x, r, θ) coordinate:

〈φ, ψ〉h =
∑
i,j

(rφψ)i,j ∆x∆r (A.23)

[φ, ψ]h =
∑
i,j

(r(Dxφ)(Dxψ))i−1/2,j ∆x∆r +
∑
i,j

(r(Drφ)(Drψ))i,j−1/2 ∆x∆r + 〈φ, V ψ〉h

(A.24)

and the corresponding norms

‖φ‖2 = 〈φ, φ〉h, ‖φ‖2
1 = [φ, φ]h = ‖∇hφ‖2 + 〈φ, V ψ〉h

where

(Dxφ)i+ 1
2
,j =

1

∆x
(φi+1,j − φi,j), (Drφ)i,j+ 1

2
=

1

∆r
(φi,j+1 − φi,j)

and ∇hφ = (Dxφ,Drφ).

Lemma 3 For any T > 0, we have

sup
[0,T ]

‖u− uh‖+ ‖∇h(ψ − ψh)‖1 ≤ C(∆x2 + ∆r2
√
| log ∆r|) in x, r, θ coordinates

where C = C(ψ, u, ν, T )

Proof: We denote by Ti,j the local truncation error. The numerical solution ψh, uh, ωh

satisfies

ωh = (−4h + V )ψh

∂tuh +
1

r2
Jh(uh, rψh) = ν(4h − V )uh

∂tωh + Jh

(ωh
r
, rψh

)
= ν(4h − V )ωh + Jh

(uh
r
, ruh

)
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while the exact solution ψ, u, ω satisfies

ω = (−4h + V )ψ + T

∂tu+
1

r2
Jh(u, rψ) = ν(4h − V )u+ T

∂tω + Jh

(ω
r
, rψ
)

= ν(4h − V )ω + Jh

(u
r
, ru
)

+ T

therefore

(ω − ωh) = (−4h + V )(ψ − ψh) + T (A.25)

∂t(u− uh) +
1

r2
(Jh(ru, rψ)− Jh(ruh, rψh)) = ν(4h − V )(u− uh) + T (A.26)

∂t(ω − ωh) +
(
Jh
(
ω
r
, rψ
)
− Jh

(
ωh
r
, rψh

))
= ν(4h − V )(ω − ωh) +

(
Jh
(
u
r
, ru
)
− Jh

(
uh
r
, ruh

))
+ T (A.27)

We take the weighted inner product of u− uh with (A.26) to get

1
2
∂t‖u− uh‖2 + 〈u− uh, 1

r2 (Jh(ru, rψ)− Jh(ruh, rψh))〉h

= ν〈u− uh, (4h − V )(u− uh)〉h + 〈u− uh, T 〉h
(A.28)

For the nonlinear terms, we have

〈u− uh,
1

r2
(Jh(ru, rψ)− Jh(ruh, rψh))〉h

= 〈u− uh,
1

r2
(Jh(r(u− uh), rψ) + Jh(ruh, r(ψ − ψh)))〉h

= 〈u− uh,
1

r2
(Jh(r(u− uh), rψ) + Jh(r(uh − u), r(ψ − ψh)) + Jh(ru, r(ψ − ψh)))〉h

= I + II + III

From the reflection boundary condition (5.2.4), we have

(II) = Th

(
u− uh
r

, r(uh − u), r(ψ − ψh)
)

The first and the third term can be estimated as follows:

Jh(r(u− uh), rψ)

= r̂D̃x(r(u− uh)) + r̂2D̃r(r(u− uh))

= r̂
(

(Ãxr)D̃x(u− uh) + (D̃xr)Ãx(u− uh)
)

+ r̂2
(

(Ãrr)D̃r(u− uh) + (D̃rr)Ãr(u− uh)
)

= r̂2
(
|∇̃h(u− uh)|+ |u− uh|

)
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where we have used the identity

D̃(fg) = ÃfD̃g + ÃgD̃f

with

(Ãxf)i,j =
1

2
(fi+1,j + fi−1,j), (Ãrf)i,j =

1

2
(fi,j+1 + fi,j−1).

Therefore
(I) = 〈u− uh, 1

r2Jh(r(u− uh), rψ)〉h
= 〈u− uh, r̂0(|∇̃h(u− uh)|+ |u− uh|)〉h
= ε‖∇̃h(u− uh)‖2 +O(1

ε
)‖u− uh‖2

≤ ε‖∇h(u− uh)‖2 +O(1
ε
)‖u− uh‖2

(A.29)

We have used the identity

∇̃h = (AxDx, ArDr),

(Axf)i,j =
1

2
(fi+ 1

2
,j + fi− 1

2
,j), (Axf)i,j =

1

2
(fi,j+ 1

2
+ fi,j− 1

2
)

together with the Cauchy Schwartz inequality in (A.29).

Similarly, we have

(III) = 〈u− uh, 1
r2Jh(ru, r(ψ − ψh))〉h

= 〈u− uh, r̂0|∇̃h(ψ − ψh)|+ r̂0|ψ − ψh|〉h
= O(1) (‖u− uh‖2 + ‖ψ − ψh‖2

1)

(A.30)

For the viscosity term, we have

ν〈u− uh, (4h − V )(u− uh)〉h = −ν[u− uh, u− uh]h = −ν‖u− uh‖2
1 (A.31)

For the truncation error term,

〈u− uh, T 〉h ≤ ‖u− uh‖2 + ‖T ‖2 ≤ ‖u− uh‖2 +O(∆x4 + | log ∆r|∆r4)

Therefore, we have

1
2
∂t‖u− uh‖2 + Th

(
u−uh
r
, r(uh − u), r(ψ − ψh)

)
+ ν

2
‖u− uh‖2

1

≤ C (‖ψ − ψh‖2
1 + ‖u− uh‖2) +O(∆x4 + | log ∆r|∆r4)

(A.32)

Similarly, we have from (A.27) that

1
2
∂t‖ψ − ψh‖2

1 + 〈ψ − ψh, Jh(ωr , rψ)− Jh(ωhr , rψh)〉h + 〈ψ − ψh, ∂tT − T 〉h

= ν〈ψ − ψh, (4h − V )(ω − ωh)〉h + 〈ψ − ψh, Jh(ur , ru)− Jh(uhr , ruh)〉h
(A.33)
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For the nonlinear terms, we have

〈ψ − ψh, Jh(
ω

r
, rψ)− Jh(

ω

r
, rψh)〉h

= 〈ψ − ψh, Jh
(
ω − ωh
r

, rψ

)
+ Jh

(
(ωh − ω)

r
, r(ψ − ψh)

)
+ Jh

(ω
r
, r(ψ − ψh)

)
〉h

= IV + V + V I

Again from the reflection BC, we have

(V ) = Th

(
r(ψ − ψh),

(ωh − ω)

r
, r(ψ − ψh)

)
= 0 (A.34)

also

〈ψ − ψh, Jh(
ω − ωh
r

, rψ)〉h = 〈(ω − ωh)
r2

, Jh(rψ, r(ψ − ψh))〉h (A.35)

Then we proceed as before to get

(IV ) = 〈(ω − ωh)
r2

, Jh(rψ, r(ψ − ψh))〉h ≤ 〈|ω − ωh|, r̂0(|ψ − ψh|+ |∇h(ψ − ψh)|)〉h

≤ ε‖ω − ωh‖2 +O(
1

ε
)‖ψ − ψh‖2

1

Direct calculation gives

Jh

(ω
r
, r(ψ − ψh))

)
≤ r̂0|ψ − ψh|+ r̂|∇h(ψ − ψh)|

Similarly

(V I) = 〈ψ − ψh, Jh
(ω
r
, r(ψ − ψh))

)
〉h ≤ 〈|ψ − ψh|, r̂|∇h(ψ − ψh)|+ r̂0(|ψ − ψh|〉h

≤ O(1)‖ψ − ψh‖2
1

〈ψ − ψh, Jh(
u

r
, ru)− Jh(

uh
r
, ruh)〉h

= 〈ψ − ψh, Jh
(
u− uh
r

, ru

)
+ Jh

(
uh − u
r

, r(u− uh)
)

+ Jh

(u
r
, r(u− uh)

)
〉h

= V II + V III + IX

34



Again from the reflection BC, we have

(V III) = Th

(
r(ψ − ψh),

(uh − u)

r
, r(u− uh)

)
(A.36)

(V II) = 〈r(ψ − ψh), Jh(
u− uh
r

, ru)〉h ≤ 〈|ψ − ψh|, r̂0|u− uh|+ r̂|∇h(u− uh)|〉h

≤ ε‖∇h(u− uh)‖2 +O(
1

ε
)‖ψ − ψh‖2

1 +O(1)‖u− uh‖2

Similarly

(IX) = 〈ψ − ψh, Jh(
u

r
, r(u− uh))〉h ≤ 〈|ψ − ψh|, r̂0|u− uh|+ r̂|∇h(u− uh)|〉h

≤ ε‖∇h(u− uh)‖2 +O(
1

ε
)‖ψ − ψh‖2

1 +O(1)‖u− uh‖2

For the viscosity term, we sum by part twice to get

ν〈(ψ − ψh), (4h − V )(ω − ωh)〉h = ν〈(4h − V )(ψ − ψh), ω − ωh〉h

= −ν‖ω − ωh‖2 + ν〈ω − ωh, T 〉h ≤ −
ν

2
‖ω − ωh‖2 +O(

1

ν
)(∆x4 + | log ∆r|∆r4)

and finally

|〈ψ − ψh, ∂tT − T 〉h| = ‖ψ − ψh‖2 +O(∆x4 + | log ∆r|∆r4)

In summary, we have
1

2
∂t‖ψ − ψh‖2

1 +
ν

2
‖ω − ωh‖2

≤ Th

(
r(ψ − ψh),

(uh − u)

r
, r(u− uh)

)
+O(∆x4 + ∆r4| log ∆r|)

+C‖ψ − ψh‖2
1 + ε‖∇h(u− uh)‖2 + C‖u− uh‖2

Let

H(t) =
1

2

(
‖u− uh‖2 + ‖ψ − ψh‖2

1

)
with suitably chosen ε, we have

dH
dt

+
ν

2
(‖u− uh‖2

1 + ‖ω − ωh‖2) ≤ CH +O(∆x4 + ∆r4| log ∆r|)

It follows from Gronwall’s inequality that

sup
[0,T ]

H(t) +
ν

2

∫ T

0

(‖u− uh‖2
1 + ‖ω − ωh‖2)dt ≤ C(∆x4 + ∆r4| log ∆r|)
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Figure 1: Example 2, contour plot of the current density j at t = 2.7
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Figure 2: Example 2, close up of Figure 1. The current sheet is resolved with about 8 grid
points.
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Figure 3: Example 2, 3D plot of Figure 1
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Figure 4: Example 2, time evolution history of maximum current sheet with different reso-
lutions. jfit: data computed in [6] using equivalence of 40962 resolution
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Figure 5: Example 3, contour plot of u at t = 0. horizontal axis: x, vertical axis: r
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Figure 6: Example 3, contour plot of u at t = 2
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Figure 7: Example 3, contour plot of u at t = 2.5
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Figure 8: Example 3, contour plot of u at t = 3.0
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Figure 9: Example 3, contour plot of u at t = 3.5
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Figure 10: Example 3, close up of Figure 9
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Figure 11: Relevant pages in [6] for referee comparison
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Figure 12: Relevant pages in [6] for referee comparison
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