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Abstract

We show that in bounded domains with no-slip boundary conditions, the Navier-

Stokes pressure can be determined in a such way that it is strictly dominated by

viscosity. As a consequence, in a general domain we can treat the Navier-Stokes equa-

tions as a perturbed vector diffusion equation, instead of as a perturbed Stokes system.

We illustrate the advantages of this view in a number of ways. In particular, we provide

simple proofs of (i) local-in-time existence and uniqueness of strong solutions for an

unconstrained formulation of the Navier-Stokes equations, and (ii) the unconditional

stability and convergence of difference schemes that are implicit only in viscosity and

explicit in both pressure and convection terms, requiring no solution of stationary

Stokes systems or inf-sup conditions.

1 Introduction

The pressure term has always created problems for understanding the Navier-
Stokes equations of incompressible flow. Pressure plays a role like a Lagrange
multiplier to enforce the incompressibility constraint, and this has been a main
source of difficulties. Our general aim in this paper is to show that the pressure
can be obtained in a way that leads to considerable simplifications in both
computation and analysis.

From the computational point of view, typical difficulties are related to the
lack of an evolution equation for updating the pressure dynamically and the lack
of useful boundary conditions for determining the pressure by solving boundary-
value problems. Existing methods able to handle these difficulties are sophis-
ticated and lack the robustness and flexibility that would be useful to address
more complex problems. For example, finite element methods have required
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carefully arranging approximation spaces for velocity and pressure to satisfy an
inf-sup compatibility condition [GR]. Projection methods too have typically en-
countered problems related to low-accuracy approximation of the pressure near
boundaries [Ch, Te2, OID]. Yet much of the scientific and technological signif-
icance of the Navier-Stokes equations derives from their role in the modeling
of physical phenomena such as lift, drag, boundary-layer separation and vortex
shedding, for which the behavior of the pressure near boundaries is of great
importance.

Our main results in this article indicate that in bounded domains with no-slip
boundary conditions, the Navier-Stokes pressure can be determined in a such
way that it is strictly dominated by viscosity. To explain, let us take Ω to be a
bounded, connected domain in RN (N ≥ 2) with C3 boundary Γ = ∂Ω. The
Navier-Stokes equations for incompressible fluid flow in Ω with no-slip boundary
conditions on Γ take the form

∂t~u+ ~u·∇~u+∇p = ν∆~u+ ~f in Ω, (1)
∇ · ~u = 0 in Ω, (2)

~u = 0 on Γ. (3)

Here ~u is the fluid velocity, p the pressure, and ν is the kinematic viscosity
coefficient, assumed to be a fixed positive constant.

A standard way to determine p is via the Helmholtz-Hodge decomposition.
We let P denote the Helmholtz projection operator onto divergence-free fields,
and recall that it is defined as follows. Given any ~a ∈ L2(Ω,RN ), there is a
unique q ∈ H1(Ω) with

∫
Ω
q = 0 such that P~a := ~a+∇q satisfies

0 =
∫

Ω

(P~a) · ∇φ =
∫

Ω

(~a+∇q) · ∇φ for all φ ∈ H1(Ω). (4)

The pressure p in (1) is determined by taking ~a = ~u·∇~u − ~f − ν∆~u. Then (1)
is rewritten as

∂t~u+ P(~u·∇~u− ~f − ν∆~u) = 0. (5)

In this formulation, solutions formally satisfy ∂t(∇ · ~u) = 0. Consequently
the zero-divergence condition (2) needs to be imposed only on initial data. Nev-
ertheless, the pressure is determined from (5) in principle even for velocity fields
that do not respect the incompressibility constraint. However, the dissipation
in (5) appears degenerate due to the fact that P annihilates gradients, so the
analysis of (5) is usually restricted to spaces of divergence-free fields.

Alternatives are possible in which the pressure is determined differently when
the velocity field has non-zero divergence. Instead of (5), we propose to consider

∂t~u+ P(~u·∇~u− ~f − ν∆~u) = ν∇(∇ · ~u). (6)

Of course there is no difference as long as ∇ · ~u = 0. But we argue that
(6) enjoys superior stability properties, for two reasons. The first is heuristic.
The incompressibility constraint is enforced in a more robust way, because the
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divergence of velocity satisfies a weak form of the diffusion equation with no-flux
(Neumann) boundary conditions — Due to (4), for all appropriate test functions
φ we have ∫

Ω

∂t~u · ∇φ = ν

∫
Ω

∇(∇ · ~u) · ∇φ. (7)

Taking φ = ∇ · ~u we get the dissipation identity

d

dt

1
2

∫
Ω

(∇ · ~u)2 + ν

∫
Ω

|∇(∇ · ~u)|2 = 0. (8)

Due to the Poincaré inequality and the fact that
∫
Ω
∇ · ~u = 0, the divergence

of velocity is smoothed and decays exponentially in L2 norm. Naturally, if
∇ · ~u = 0 initially, this remains true for all later time, and one has a solution of
the standard Navier-Stokes equations (1)–(3).

The second reason is much deeper. To explain, we recast (6) in the form
(1) while explicitly identifying the separate contributions to the pressure term
made by the convection and viscosity terms. Using the Helmholtz projection
operator P, we introduce the Euler pressure pE and Stokes pressure pS via the
relations

P(~u·∇~u− ~f) = ~u·∇~u− ~f +∇pE, (9)

P(−∆~u) = −∆~u+∇(∇ · ~u) +∇pS. (10)

This puts (6) into the form (1) with p = pE + νpS:

∂t~u+ ~u·∇~u+∇pE + ν∇pS = ν∆~u+ ~f. (11)

Identifying the Euler and Stokes pressure terms in this way allows one to focus
separately on the difficulties peculiar to each. The Euler pressure is nonlinear,
but of lower order. Since the Helmholtz projection is orthogonal, naturally the
Stokes pressure satisfies∫

Ω

|∇pS|2 ≤
∫

Ω

|∆~u|2 if ∇ · ~u = 0. (12)

The key observation is that the Stokes pressure term is actually strictly domi-
nated by the viscosity term, regardless of the divergence constraint. We regard
the following theorem as the main achievement of this paper.

Theorem 1 Let Ω ⊂ RN (N ≥ 2) be a connected bounded domain with C3

boundary. Then for any ε > 0, there exists C ≥ 0 such that for all vector fields
~u ∈ H2 ∩H1

0 (Ω,RN ), the Stokes pressure pS determined by (10) satisfies∫
Ω

|∇pS|2 ≤ β

∫
Ω

|∆~u|2 + C

∫
Ω

|∇~u|2, (13)

where β = 2
3 + ε.
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This theorem allows one to see that (6) is fully dissipative. To begin to
see why, recall that the Laplace operator ∆: H2(Ω) ∩ H1

0 (Ω) → L2(Ω) is an
isomorphism, and note that ∇pS is determined by ∆~u via

∇pS = (I − P −Q)∆~u, Q := ∇∇ ·∆−1. (14)

Equation (6) can then be written

∂t~u+ P(~u·∇~u− ~f) = ν(P +Q)∆~u
= ν∆~u− ν(I − P −Q)∆~u. (15)

Theorem 1 will allow us to regard the last term as a controlled perturbation.
We can take ∆~u = ~g arbitrary in L2(Ω,RN ) and reinterpret Theorem 1 as

follows. The last term in (13) can be interpreted as the squared norm of ~u
in H1

0 (Ω,RN ), giving the norm of ~g in the dual space H−1(Ω,RN ). Thus the
conclusion of Theorem 1 is equivalent to the following estimate, which says that
I − P is approximated by the bounded operator Q : L2(Ω,RN ) → ∇H1(Ω):

Corollary 1 For all vector fields ~g ∈ L2(Ω,RN ) we have

‖(I − P −Q)~g‖2L2 ≤ β‖~g‖2L2 + C‖~g‖2H−1 . (16)

There are several different ways to interpret the Stokes pressure as we have
defined it. In this vein we make a few further observations. First, note that
P∇(∇ · ~u) = 0 for all ~u in H2 ∩H1

0 (Ω,RN ), since ∇ · ~u lies in H1(Ω). Then

∇pS = (I − P)(∆~u−∇(∇ · u)). (17)

Now A~u := ∆~u−∇(∇ · ~u) has zero divergence in the sense of distributions and
is in L2(Ω,RN ), so A~u lies in the space H(div; Ω) consisting of vector fields in
L2(Ω,RN ) with divergence in L2(Ω). By consequence, ∆pS = 0 in the sense of
distributions and so ∇pS is in H(div; Ω) also. By a well-known trace theorem
(see [GR], theorem 2.5), the normal components of A~u and ∇pS belong to the
Sobolev space H−1/2(Γ), and from the definition of P we have

0 =
∫

Ω

(∇pS −A~u) · ∇φ =
∫

Γ

φ~n · (∇pS −A~u) (18)

for all φ ∈ H1(Ω). So pS is determined as the zero-mean solution of the Neumann
boundary-value problem

∆pS = 0 in Ω, ~n · ∇pS = ~n · (∆−∇∇·)~u on Γ. (19)

Furthermore, in two and three dimensions, we have

∇pS = −(I − P)(∇×∇× ~u) (20)

due to the identity ∇×∇× ~u = −∆~u+∇(∇ · u). Green’s formula yields∫
Γ

~n · (∇×∇× ~u)φ =
∫

Ω

(∇×∇× ~u) · ∇φ = −
∫

Γ

(∇× ~u) · (~n×∇φ) (21)



Divorcing pressure from viscosity 5

and so pS (with zero average) is determined through the weak formulation [JL]∫
Ω

∇pS · ∇φ =
∫

Γ

(∇× ~u) · (~n×∇φ) for all φ ∈ H1(Ω). (22)

(Note that ∇ × ~u ∈ H1/2(Γ,RN ), and ~n × ∇φ ∈ H−1/2(Γ,RN ) by a standard
trace theorem [GR, Theorem 2.11], since ∇φ lies in H(curl; Ω), the space of
vector fields in L2(Ω,RN ) with curl in L2.)

As indicated by (19) or (22), the Stokes pressure is generated by the tangen-
tial part of vorticity at the boundary. In the whole space RN or in the case of
a periodic box without boundary, the Helmholtz projection is exactly given via
Fourier transform by P = I −Q and the Stokes pressure vanishes. Essentially,
the Stokes pressure supplies the correction to this formula induced by the no-slip
boundary conditions. By consequence, the results of the present paper should
have nothing to do with the global regularity question for the three-dimensional
Navier-Stokes equations. But as we have mentioned, many important physi-
cal phenomena modeled by the Navier-Stokes equations involve boundaries and
boundary-layer effects, and it is exactly here where the Stokes pressure should
play a key role.

The unconstrained formulation (6) is not without antecedents in the litera-
ture. Orszag et al. [OID] used the boundary condition in (19) as a way of enforc-
ing consistency for a Neumann problem in the context of the projection method.
After the results of this paper were completed, we found that the formulation (6)
is exactly equivalent to one studied by Grubb and Solonnikov [GS1, GS2]. These
authors also study several other types of boundary conditions, and argue that
this formulation is parabolic in a nondegenerate sense. They perform an anal-
ysis based on a general theory of parabolic pseudo-differential initial-boundary
value problems, and also show that for strong solutions, the divergence satisfies
a diffusion equation with Neumann boundary conditions.

Due to our Theorem 1, we can treat the Navier-Stokes equations in bounded
domains simply as a perturbation of the vector diffusion equation ∂t~u = ν∆~u,
regarding both the pressure and convection terms as dominated by the viscosity
term. This stands in contrast to the usual approach that regards the Navier-
Stokes equations as a perturbation of the Stokes system ∂t~u = ν∆~u − ∇p,
∇ · ~u = 0. Discussing this usual approach to analysis, Tartar [Ta2, p. 68]
comments

“The difficulty comes from the fact that one does not have adequate
boundary conditions for p. . . .[S]ending the nonlinear term to play
with f , one considers the Navier-Stokes equations as a perturbation
of Stokes equation, and this is obviously not a good idea, but no one
has really found how to do better yet.”

By way of seeking to do better, in this paper we exploit Theorem 1 in a number
of ways. In particular, we develop a simple proof of local-in-time existence and
uniqueness for strong solutions of the unconstrained formulation (11) and conse-
quently for the original Navier-Stokes equations, based upon demonstrating the
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unconditional stability of a simple time-discretization scheme with explicit time-
stepping for the pressure and nonlinear convection terms and that is implicit
only in the viscosity term.

The discretization that we use is related to a class of extremely efficient
numerical methods for incompressible flow [Ti, Pe, JL, GuS]. Thanks to the
explicit treatment of the convection and pressure terms, the computation of the
momentum equation is completely decoupled from the computation of the kine-
matic pressure Poisson equation used to enforce incompressibility. No stationary
Stokes solver is necessary to handle implicitly differenced pressure terms. For
three-dimensional flow in a general domain, the computation of incompressible
Navier-Stokes dynamics is basically reduced to solving a heat equation and a
Poisson equation at each time step. This class of methods is very flexible and
can be used with all kinds of spatial discretization methods [JL], including fi-
nite difference, spectral, and finite element methods. The stability properties
we establish here should be helpful in analyzing these methods.

Indeed, we will show below that our stability analysis easily adapts to proving
unconditional stability and convergence for corresponding fully discrete finite-
element methods with C1 elements for velocity and C0 elements for pressure. It
is important to note that we impose no inf-sup compatibility condition between
the finite-element spaces for velocity and pressure. The inf-sup condition (also
known as the Ladyzhenskaya-Babuška-Brezzi condition) has long been a central
foundation for finite-element methods for all saddle-point problems including the
stationary Stokes equation. Its beautiful theory is a masterpiece documented in
many finite-element books. In the usual approach, the inf-sup condition serves to
force the approximate solution to stay close to the divergence-free space where
the Stokes operator P∆ is dissipative. However, due to the fully dissipative
nature of the unconstrained formulation (11) which follows as a consequence
of Theorem 1, as far as our stability analysis in section 6 is concerned, the
finite-element spaces for velocity and pressure can be completely unrelated.

The proof of Theorem 1 will be carried out in section 3. Important in-
gredients in the proof are: (i) an estimate near the boundary that is related
to boundedness of the Neumann-to-Dirichlet map for boundary values of har-
monic functions — this estimate is proved in section 2, see Theorem 2; and (ii)
a representation formula for the Stokes pressure in terms of a part of velocity
near and parallel to the boundary. In section 2 we also describe the space ∇Sp

of all possible Stokes pressure gradients (i.e., the range of I − P − Q). In R3

it turns out that this is the space of square-integrable vector fields that are
simultaneously gradients and curls (see Theorem 4 in section 3.5 below).

In section 4 we establish the unconditional stability of the time-discretiza-
tion scheme, and in section 5 we use this to study existence and uniqueness
for strong solutions with no-slip boundary conditions. In section 6 we adapt
the stability analysis to prove the unconditional stability and convergence of
corresponding C1/C0 finite-element methods.

In section 7 we show that Theorem 1 also allows one to treat the linearized
equations (an unconstrained version of the Stokes system) easily by analytic
semigroup theory. We deal with non-homogeneous boundary conditions in sec-
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tion 8. From these results, in section 9 we deduce an apparently new result for
the linear Stokes system, namely an isomorphism theorem between the solution
space and a space of data for non-homogeneous side conditions in which only
the average flux through the boundary vanishes.

2 Integrated Neumann-to-Dirichlet estimates in
tubes

2.1 Notation

Let Ω ⊂ RN be a bounded domain with C3 boundary Γ. For any ~x ∈ Ω we let
Φ(~x) = dist(x,Γ) denote the distance from x to Γ. For any s > 0 we denote the
set of points in Ω within distance s from Γ by

Ωs = {~x ∈ Ω | Φ(~x) < s}, (23)

and set Ωc
s = Ω\Ωs and Γs = {~x ∈ Ω | Φ(~x) = s}. Since Γ is C3 and compact,

there exists s0 > 0 such that Φ is C3 in Ωs0 and its gradient is a unit vector,
with |∇Φ(~x)| = 1 for every ~x ∈ Ωs0 . We let

~n(~x) = −∇Φ(~x), (24)

then ~n(~x) is the outward unit normal to Γs = ∂Ωc
s for s = Φ(~x), and ~n ∈

C2(Ω̄s0 ,RN ).
We let

〈
f, g
〉
Ω

=
∫
Ω
fg denote the L2 inner product of functions f and g in

Ω, and let ‖·‖Ω denote the corresponding norm in L2(Ω). We drop the subscript
on the inner product and norm when the domain of integration is understood
in context.

2.2 Statement of results

Our strategy for proving Theorem 1 crucially involves an integrated Neumann-
to-Dirichlet–type estimate for harmonic functions in the tubular domains Ωs for
small s > 0.

The theorem below contains two estimates of this type. The first, (26) in
part (i), can be obtained from a standard Neumann-to-Dirichlet estimate for
functions harmonic in Ω, of the form

β0

∫
Γr

|(I − ~n~nt)∇p|2 ≤
∫

Γr

|~n ·∇p|2, (25)

by integrating over r ∈ (0, s), provided one shows that β0 > 0 can be chosen
independent of r for small r > 0. On the first reading, the reader is encouraged
to take (26) for granted and proceed directly to section 3.2 at this point; it is
only necessary to replace (111) in the proof of Theorem 1 by the corresponding
result from (26) to establish that the estimate in Theorem 1 is valid for some
β < 1 depending upon Ω.
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The second estimate, in part (ii), will be used with β1 close to 1 to establish
the full result in Theorem 1 for any number β greater than 2

3 , independent of
the domain.

Theorem 2 Let Ω be a bounded domain with C3 boundary. (i) There exists
β0 > 0 such that for sufficiently small s > 0, whenever p is a harmonic function
in Ωs we have

β0

∫
Ωs

|(I − ~n~nt)∇p|2 ≤
∫

Ωs

|~n ·∇p|2. (26)

(ii) Let β1 < 1. Then for any sufficiently small s > 0, whenever p is a harmonic
function in Ωs and p0 is constant on each component of Ωs, we have

β1

∫
Ωs

|(I − ~n~nt)∇p|2 ≤
∫

Ωs

|~n ·∇p|2 +
24
s2

∫
Ωs

|p− p0|2. (27)

Our proof is motivated by the case of slab domains with periodic bound-
ary conditions in the transverse directions. In this case the analysis reduces
to estimates for Fourier series expansions in the transverse variables. For gen-
eral domains, the idea is to approximate −∆ in thin tubular domains Ωs by
the Laplace-Beltrami operator on Γ × (0, s). This operator has a direct-sum
structure, and we obtain the integrated Neumann-to-Dirichlet–type estimate by
separating variables and expanding in series of eigenfunctions of the Laplace-
Beltrami operator on Γ. For basic background in Riemannian geometry and the
Laplace-Beltrami operator we refer to [Au] and [Ta].

2.3 Harmonic functions on Γ× (0, s)

Geometric preliminaries. We consider the manifold G = Γ×I with I = (0, s)
as a Riemannian submanifold of RN ×R with boundary ∂G = Γ×{0, s}. We let
γ denote the metric on Γ induced from RN , let ι denote the standard Euclidean
metric on I, and let g denote the metric on the product space G. Any vector ~a
tangent to G at z = (y, r) has components ~aΓ tangent to Γ at y and ~aI tangent
to I at r. For any two such vectors ~a and ~b, we have

g(~a,~b) = γ(~aΓ,~bΓ) + ι(~aI ,~bI). (28)

Given a C1 function z = (y, r) 7→ f(y, r) on G, its gradient ∇Gf at z is a
tangent vector to G determined from the differential via the metric, through
requiring

g(∇Gf,~a) = df · ~a for all ~a ∈ TzG. (29)

By keeping r fixed, the function y 7→ f(y, r) determines the gradient vector ∇Γf
tangent to Γ in similar fashion, and by keeping y fixed, the function r 7→ f(y, r)
determines the gradient vector ∇If tangent to I. These gradients are also the
components of ∇Gf :

(∇Gf)Γ = ∇Γf, (∇Gf)I = ∇If.
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If u = (u1, . . . , uN−1) 7→ y = (y1, . . . , yN ) is a local coordinate chart for
Γ, the metric is given by γij du

i duj (summation over repeated indices implied)
with matrix elements

γij =
∂yk

∂ui

∂yk

∂uj
.

For I ⊂ R the identity map serves as coordinate chart. In these coordinates the
tangent vectors are written (in a form that aids in tracking coordinate changes)
as

∇Γf = γij ∂f

∂ui

∂

∂uj
, ∇If =

∂f

∂r

∂

∂r
. (30)

As usual, the matrix (γij) = (γij)−1. Given two C1 functions f, f̃ on G,

γ(∇Γf,∇Γf̃) = γij ∂f

∂ui

∂f̃

∂uj
, ι(∇If,∇I f̃) =

∂f

∂r

∂f̃

∂r
. (31)

In these coordinates, the (positive) Laplace-Beltrami operators on Γ and I
respectively take the form

∆Γf = − 1
√
γ

∂

∂ui

(
√
γγij ∂

∂uj
f

)
, ∆If = − ∂2

∂r2
f, (32)

where
√
γ =

√
det(γij) is the change-of-variables factor for integration on Γ —

if a function f on Γ is supported in the range of the local coordinate chart then∫
Γ

f(y) dS(y) =
∫

RN−1
f(y(u))

√
γ du. (33)

(Since orthogonal changes of coordinates in RN and RN−1 leave the integral
invariant, one can understand

√
γ as the product of the singular values of the

matrix ∂y/∂u.)
Whenever f ∈ H1(Γ) and f̃ ∈ H2(Γ), one has the integration-by-parts

formula ∫
Γ

f∆Γf̃ =
∫

Γ

γ(∇Γf,∇Γf̃). (34)

One may extend ∆Γ to be a map from H1(Γ) → H−1(Γ) by using this equation
as a definition of ∆Γf̃ as a functional on H1(Γ). In standard fashion [Ta], one
finds that I+∆Γ : H1(Γ) → H−1(Γ) is an isomorphism, and that (I+∆Γ)−1 is
a compact self-adjoint operator on L2(Γ), hence L2(Γ) admits an orthonormal
basis of eigenfunctions of ∆Γ. Since the coefficient functions in (32) are C1,
standard interior elliptic regularity results ([GT, Theorem 8.8], [Ta, p. 306,
Proposition 1.6]) imply that the eigenfunctions belong to H2(Γ). We denote
the eigenvalues of ∆Γ by ν2

k , k = 1, 2, . . ., with 0 = ν1 ≤ ν2 ≤ . . . where νk →∞
as k →∞, and let ψk be corresponding eigenfunctions forming an orthonormal
basis of L2(Γ). If ∆Γψ = 0 then ψ is constant on each component of Γ, so if m
is the number of components of Γ, then 0 = νm < νm+1.

In the coordinates û = (u, r) 7→ z = (y, r) for G, the metric g takes the
form γij du

i duj + dr2, and the Laplace-Beltrami operator ∆G = ∆Γ + ∆I .
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Similar considerations as above apply to ∆G , except G has boundary. Whenever
f ∈ H1

0 (G) and f̃ ∈ H2(G) we have∫
G
f∆G f̃ =

∫
G
g(∇Gf,∇G f̃). (35)

One extends ∆G to map H1(G) to H−1(G) by using this equation as a definition
of ∆G f̃ as a functional on H1

0 (G).
We introduce notation for L2 inner products and norms on G as follows:

〈f, f̃〉G =
∫
G
ff̃ ‖f‖2G =

∫
G
|f |2, (36)

〈∇Γf,∇Γf̃〉G =
∫
G
γ(∇Γf,∇Γf̃), ‖∇Γf‖2G =

∫
G
γ(∇Γf,∇Γf), (37)

〈∇If,∇I f̃〉G =
∫
G
(∂rf)(∂rf̃), ‖∇If‖2G =

∫
G
(∂rf)2, (38)

〈∇Gf,∇G f̃〉G =
∫
G
g(∇Gf,∇G f̃) = 〈∇Γf,∇Γf̃〉G + 〈∇If,∇I f̃〉G , (39)

‖∇Gf‖2G =
∫
G
g(∇Gf,∇Gf) = ‖∇Γf‖2G + ‖∇If‖2G . (40)

Lemma 1 Suppose f ∈ H1(G) and ∆Gf = 0 on G = Γ × I where I = (0, s).
Then, (i) there exists β̂0 ∈ (0, 1) independent of f such that

β̂0‖∇Γf‖2G ≤ ‖∇If‖2G , (41)

and (ii)

‖∇Γf‖2G ≤ ‖∇If‖2G +
12
s2
‖f − f0‖2G (42)

whenever f0 is constant on Γi × (0, s) for every component Γi of Γ.

Proof: Suppose ∆Gf = 0 on G. Since the coefficient functions in (32) are
C1, the aforementioned interior elliptic regularity results imply that that f ∈
H2

loc(G). For any r ∈ (0, s), fixing r yields a trace of f inH1(Γ), and as a function
of r, we can regard f = f(y, r) as in the space L2([a, b],H2(Γ))∩H2([a, b], L2(Γ))
for any closed interval [a, b] ⊂ (0, s). Now, for each r we have the L2(Γ)-
convergent expansion

f(y, r) =
∑

k

f̂(k, r)ψk(y) (43)

where
f̂(k, r) =

∫
Γ

f(y, r)ψk(y) dS(y). (44)

For each k ∈ N, the map r 7→ f̂(k, r) is in H2
loc(0, s) and

∂rf̂(k, r) =
∫

Γ

∂rf(y, r)ψk(y) dS(y). (45)
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For any smooth ξ ∈ C∞0 (0, s), taking f̃(y, r) = ψk(y)ξ(r) we compute that

∇Γf̃ = ξ(r)∇Γψk, ∂rf̃ = ψk∂rξ, (46)

and so by (35), (28), and (34), we have

0 =
∫
G
(∆Gf)f̃ =

∫
I

∫
Γ

(
γ(∇Γf,∇Γf̃) + (∂rf)(∂rf̃)

)
=
∫
I
ξ(r)

∫
Γ

γ(∇Γf,∇Γψk) +
∫
I
(∂rξ)

∫
Γ

(∂rf)ψk

=
∫
I
ξ(r)

∫
Γ

f∆Γψk +
∫
I
(∂rξ)∂rf̂(k, r)

=
∫ s

0

(
ξ(r)ν2

k f̂(k, r) + (∂rξ)∂rf̂(k, r)
)
dr. (47)

Therefore f̂(k, ·) is a weak solution of ∂2
r f̂ = ν2

k f̂ in H2
loc(0, s) and hence is C2

and it follows that whenever νk 6= 0, there exist ak, bk such that

f̂(k, r) = ak sinh νkτ + bk cosh νkτ, τ = r − s/2. (48)

Now

‖f‖2G =
∑

k

∫ s

0

|f̂(k, r)|2 dr, (49)

‖∇Γf‖2G =
∑

k

∫ s

0

|νkf̂(k, r)|2 dr, (50)

‖∇If‖2G =
∑

k

∫ s

0

|∂rf̂(k, r)|2 dr. (51)

Let γk =
∫ s/2

−s/2
sinh2 νkτ dτ . Then γk increases with k, and

γk + s =
∫ s/2

−s/2

cosh2 νkτ dτ ≥
∫ s/2

−s/2

(1 + ν2
kτ

2) dτ ≥ ν2
ks

3

12
. (52)

Whenever νk 6= 0 we get∫ s

0

|f̂(k, r)|2 dr = |ak|2γk + |bk|2(γk + s), (53)∫ s

0

|∂rf̂(k, r)|2 dr = ν2
k(|ak|2(γk + s) + |bk|2γk), (54)

and since β̂0(γk + s) ≤ γk where β̂0 = γm+1/(γm+1 + s), it follows

β̂0

∫ s

0

|νkf̂(k, r)|2 dr ≤
∫ s

0

|∂rf̂(k, r)|2 dr, (55)∫ s

0

|νkf̂(k, r)|2 dr ≤
∫ s

0

|∂rf̂(k, r)|2 dr +
12
s2

∫ s

0

|f̂(k, r)|2 dr. (56)

The results in (i) and (ii) follow by summing over k. �
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2.4 Global coordinates on Γ× (0, s)

It will be important for comparison with the Laplacian on Ωs to coordinatize G
for small s > 0 globally via the coordinate chart Ωs → G given by

x 7→ z = (y, r) = (x+ Φ(x)~n(x),Φ(x)). (57)

In these coordinates, the metric on G that is inherited from RN+1 has the
representation gij dx

i dxj with matrix elements given by

gij =
∂zk

∂xi

∂zk

∂xj
=
∂yk

∂xi

∂yk

∂xj
+

∂r

∂xi

∂r

∂xj
. (58)

Let us write ∂i = ∂/∂xi and let ∇f = (∂1f, . . . , ∂Nf) denote the usual gradient
vector in RN . The components of ~n are ni = −∂iΦ and so ∂inj = ∂jni, meaning
the matrix ∇~n is symmetric. Since |~n|2 = 1 we have ni∂jni = 0 = ni∂inj . Then
the N ×N matrix

∂y

∂x
= I − ~n~nt + Φ∇~n = (I − ~n~nt)(I + Φ∇~n)(I − ~n~nt), (59)

and the matrix

G = (gij) = (I − ~n~nt)(I + Φ∇~n)2(I − ~n~nt) + ~n~nt = (I + Φ∇~n)2. (60)

With
√
g =

√
detG, the integral of a function f on G in terms of these

coordinates is given by ∫
G
f =

∫
Ωs

f
√
g dx. (61)

Given two C1 functions f , f̃ on G, we claim that the following formulae are
valid in the coordinates from (57):

g(∇Gf,∇G f̃) = (∇f)tG−1(∇f̃) = gij∂if∂j f̃ , (62)

γ(∇Γf,∇Γf̃) = (∇f)t(I − ~n~nt)G−1(I − ~n~nt)(∇f̃), (63)

ι(∇If,∇I f̃) = (~n ·∇f)(~n ·∇f̃) = (∇f)t~n~nt(∇f̃). (64)

Of course (62) simply expresses the metric in the x-coordinates from (57). To
prove (64), first note that along any curve τ 7→ x(τ) satisfying ∂τx = ~n(x) we
find ∂τ~n(x) = nj∂jni = 0, so ~n(x) is constant and the curve is a straight line
segment. Hence in the chart from (57), ~n(x) = ~n(y) and we have x = y− r~n(y).
Given a C1 function f then, we find that in these Ωs-coordinates,

∂rf(y, r) = (∂rxj)(∂jf) = nj∂jf = ~n ·∇f, (65)

and (64) follows from (31). Finally, (63) follows directly from (62) and (64)
using (28) — since ~n~nt∇~n = 0 we have ~n~ntG = ~n~nt so ~n~nt = ~n~ntG−1 and
hence

(I − ~n~nt)G−1(I − ~n~nt) = G−1 − ~n~nt. (66)
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2.5 Proof of Theorem 2

Let β1 < 1. Suppose ∆p = 0 in Ωs. We may assume p ∈ H1(Ωs) without loss
of generality by establishing the result in subdomains where Φ(x) ∈ (a, b) with
[a, b] ⊂ (0, s) and taking a→ 0, b→ s. We write

p = p1 + p2,

where p1 ∈ H1
0 (Ωs) is found by solving a weak form of ∆Gp1 = ∆Gp:

〈∇Gp1,∇Gφ〉G = 〈∇Gp,∇Gφ〉G for all φ ∈ H1
0 (Ωs). (67)

For small s > 0, G = (gij) = I+O(s) and
√
g = 1+O(s). Since 〈∇p,∇p1〉 = 0,

taking φ = p1 we have

‖∇Gp1‖2G =
∫

Ωs

(∇p)t(G−1√g − I)∇p1 dx ≤ Cs‖∇p‖Ωs
‖∇Gp1‖G , (68)

where C is a constant independent of s. By Poincaré’s inequality we also have

‖p1‖2G ≤
s2

π2
‖∇Gp1‖2G (69)

since the eigenvalues of ∆G on the product space Γ× [0, s] with Dirichlet bound-
ary conditions all have the form µ = ν2

k+j2π2/s2 for j, k ∈ N, so that µ ≥ π2/s2.
Let us first prove part (ii). For 0 < ε < 1, using (63), (61) and (37) we

deduce

‖(I − ~n~nt)∇p‖2Ωs
≤ (1 + Cs)‖∇Γp‖2G
≤ (1 + Cs)

(
(1 + ε)‖∇Γp2‖2G + (1 + ε−1)‖∇Γp1‖2G

)
≤ (1 + Cs)(1 + ε)

(
‖∇Γp2‖2G + ε−1C2s2‖∇p‖2Ωs

)
. (70)

Now p2 = p − p1 satisfies ∆Gp2 = 0 in Ωs and p2 ∈ H1(G), hence for any p0

constant on each component of Ωs we have

‖∇Γp2‖2G ≤ ‖∇Ip2‖2G +
12
s2
‖p2 − p0‖2G , (71)

‖∇Ip2‖2G ≤ (1 + ε)‖∇Ip‖2G + (1 + ε−1)‖∇Ip1‖2G
≤ (1 + ε)(1 + Cs)

(
‖~n ·∇p‖2Ωs

+ ε−1C2s2‖∇p‖2Ωs

)
, (72)

12
s2
‖p2 − p0‖2G ≤ 24

s2
(
‖p− p0‖2G + ‖p1‖2G

)
≤ 24

s2
‖p− p0‖2G +

24
π2
‖∇Gp1‖2G

≤ 24
s2

(1 + Cs)‖p− p0‖2Ωs
+ C2s2‖∇p‖2Ωs

(73)

Presuming Cs < 1
3ε, assembling these estimates yields

‖(I − ~n~nt)∇p‖2Ωs
≤ (1 + ε)4

(
‖~n ·∇p‖2Ωs

+
24
s2
‖p− p0‖2Ωs

+ ε‖∇p‖2Ωs

)
≤ (1 + ε)5

(
‖~n ·∇p‖2Ωs

+
24
s2
‖p− p0‖2Ωs

+ ε‖(I − ~n~nt)∇p‖2Ωs

)
, (74)
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since |∇p|2 = |~n·∇p|2+|(I−~n~nt)∇p|2. Fixing ε > 0 small so that (1+ε)−5−ε >
β1 proves part (ii).

To prove part (i), instead of (71) we use

β̂0‖∇Γp2‖2G ≤ ‖∇Ip2‖2G (75)

(from part (i) of Lemma 1) together with (70) and (72) and obtain

β̂0‖(I − ~n~nt)∇p‖2Ωs
≤ (1 + ε)4

(
‖~n ·∇p‖2Ωs

+
2ε
9
‖∇p‖2Ωs

)
≤ (1 + ε)5

(
‖~n ·∇p‖2Ωs

+ ε‖(I − ~n~nt)∇p‖2Ωs

)
. (76)

Now taking ε > 0 so small that ε(1 + ε)5 < β̂0 finishes the proof. �

3 Analysis of the Stokes pressure

The main purpose of this section is to prove Theorem 1. We also describe the
range of the map ~u 7→ ∇pS from velocity fields to Stokes pressure gradients.
For motivation for the proof of Theorem 1, the reader can proceed directly to
section 3.3 at this point. Here, we first establish some key preliminary results.

3.1 An L2 estimate

The following L2 estimate on the Stokes pressure will be used to obtain the full
result of Theorem 1 for arbitrary β > 2

3 . It is not needed to prove the weaker
statement that (13) holds for some β < 1.

Lemma 2 Let Ω ⊂ RN (N ≥ 2) be any bounded connected domain with C1,1

boundary. For any ε > 0, there is a constant C ≥ 0 so that for any ~u ∈
H2 ∩H1

0 (Ω,RN ), the associated Stokes pressure pS defined by (10) with zero
average satisfies

‖pS‖ ≤ ε‖∆~u‖+ C‖~u‖. (77)

Proof: For any φ ∈ L2(Ω), define ψ by

∆ψ = φ− φ̄, ~n · ∇ψ
∣∣
Γ

= 0, (78)

where φ̄ is the average value of φ over Ω. Recall p̄S = 0. Then,〈
pS, φ

〉
=
〈
pS, φ− φ̄

〉
=
〈
pS,∆ψ

〉
= −

〈
∇pS,∇ψ

〉
. (79)

From (22), we know
〈
∇pS,∇ψ

〉
=
〈
∇ × ~u, ~n × ∇ψ

〉
Γ

when N = 2 or 3. For
general N , using the notation ∂i := ∂/∂xi and automatic summation upon
repeated indices, from (19) we derive

〈
∇pS,∇ψ

〉
=

1
2

∫
Γ

(∂jui − ∂iuj)(nj∂iψ − ni∂jψ). (80)
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Plug (80) into (79), take the absolute value and use the trace theorem to get

|
〈
pS, φ

〉
| ≤ c0‖∇~u‖L2(Γ)‖∇ψ‖L2(Γ) ≤ c1‖~u‖H3/2(Ω)‖ψ‖H3/2(Ω). (81)

By the regularity theory for Poisson’s equation (78),

‖ψ‖H3/2(Ω) ≤ c2‖φ− φ̄‖ ≤ c2‖φ‖. (82)

By a standard interpolation theorem, for any δ > 0, there is a constant c, so

‖~u‖H3/2(Ω) ≤ δ‖∆~u‖+ c‖~u‖. (83)

Plugging (82) and (83) into (81), we get

|
〈
pS, φ

〉
| ≤

(
δ‖∆~u‖+ c‖~u‖

)
c1c2‖φ‖. (84)

Thus,

‖pS‖ = sup
φ∈L2

|
〈
pS, φ

〉
|

‖φ‖
≤ ε‖∆~u‖+ cc1c2‖~u‖. � (85)

3.2 Identities at the boundary

A key part of the proof of Theorem 1 involves boundary values of two quantities
that involve the decomposition of ~u = (I −~n~nt)~u+~n~nt~u into parts parallel and
normal to the boundary. Our goal in this subsection is to prove the following.

Lemma 3 Let Ω ⊂ RN be a bounded domain with boundary Γ of class C3.
Then for any ~u ∈ H2(Ω,RN ) with ~u|Γ = 0, the following is valid on Γ:

(i) ∇ ·
(
(I − ~n~nt)~u

)
= 0 in H1/2(Γ).

(ii) ~n · (∆−∇∇·)
(
~n~nt~u

)
= 0 in H−1/2(Γ).

The proof will reduce to the case ~u ∈ C2(Ω̄,RN ), due to the following density
result.

Lemma 4 Let Ω ⊂ RN be a bounded domain with boundary Γ of class C2,α

where 0 < α < 1. Then for any ~u ∈ H2 ∩H1
0 (Ω,RN ), there exists a sequence

~uk ∈ C2,α(Ω̄) such that ~uk|Γ = 0 and ‖~uk − ~u‖H2(Ω) → 0.

Proof: Define ~f = ∆~u. Since ~f ∈ L2, we can find a sequence ~fk ∈ C1(Ω̄) so
that ‖~fk − ~f‖L2 → 0. Construct ~uk by solving

∆~uk = ~fk, ~uk

∣∣
∂Ω

= 0.

Classical elliptic regularity theory in Hölder spaces (see [GT], theorem 15.13)
says that a unique ~uk exists and is in C2,α(Ω̄). By standard regularity theory
in Sobolev spaces,

‖~uk − ~u‖H2 ≤ C‖~fk − ~f‖L2 → 0. �
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Proof of Lemma 3: To begin, recall ~n = −∇Φ. Equality of mixed partial
derivatives yields ∂jni = ∂inj for all i, j = 1, . . . , N . Together with the fact
nini = 1, we infer that for small s > 0, throughout Ωs we have

ni∂jni = 0 and ni∂inj = 0. (86)

(i) First, for any f ∈ C1(Ω̄), if f = 0 on Γ then ∇f ‖ ~n on Γ, which means

(I − ~n~nt)∇f = 0, or (∂k − nknj∂j)f = 0 for k = 1, . . . , N. (87)

Now suppose ~u ∈ C2(Ω̄,RN ) with ~u = 0 on Γ. Then, after taking derivatives in
Ωs for some s > 0 and then taking the trace on Γ, using (87) we get

∇ ·
(
(I − ~n~nt)~u

)
= ∂j

(
uj − njnkuk

)
= ∂juj − njnk∂juk = ∂juj − ∂kuk = 0.

For general ~u ∈ H2(Ω,RN ) with ~u|Γ = 0, the expression ∇ ·
(
(I − ~n~nt)~u

)
is

in H1(Ωs) for small s > 0 and hence is in H1/2(Γ) by a trace theorem. After
approximating ~u using Lemma 4 we obtain the result in (i).

(ii) At first we suppose ~u ∈ C2(Ω̄,RN ) with ~u = 0 on Γ. We claim in fact
that for any f ∈ C2(Ω̄) with f

∣∣
Γ

= 0,

~n · (∆−∇∇·)(~nf) = 0 on Γ. (88)

This yields (ii) by taking f = ~n · ~u. We prove (88) in two steps.
1. The formula in (i) holds in C(Γ) if ~u is C1. Since I − ~n~nt = (I − ~n~nt)2,

we can use ~u = (I − ~n~nt)∇f in (i) to find that

∇ ·
(
(I − ~n~nt)∇f

)
= 0 on Γ. (89)

2. Using (86) it is easy to verify the following identities in Ωs:

~n ·∆(~nf) = ∆f + f ~n ·∆~n, (90)
~n ·∇∇ · (~nf) = (~n~nt) : ∇2f + (∇ · ~n)~n ·∇f + f~n ·∇∇ · ~n, (91)
∇ · (~n~nt∇f) = (~n~nt) : ∇2f + (∇ · ~n)~n ·∇f. (92)

Here (~n~nt) : ∇2f := ninj∂i∂jf . It directly follows that

~n · (∆−∇∇·)(~nf) = ∇ · (I − ~n~nt)∇f + f~n · (∆−∇∇·)~n. (93)

Using this with (89) proves (88), and establishes (ii) when ~u ∈ C2(Ω̄) with ~u = 0
on Γ.

To establish (ii) for arbitrary ~u ∈ H2(Ω,RN ), we restrict to Ωs for small
s and let ~a = (∆ − ∇∇·)(~n~nt~u). Then ~a ∈ L2(Ωs,RN ) and ∇ · ~a = 0 in the
sense of distributions, so ~a ∈ H(div; Ωs) and a well-known trace theorem (see
[GR], theorem 2.5) yields that the map H2(Ωs,RN ) → H(div; Ωs) → H−1/2(Γ)
given by ~u 7→ ~a 7→ ~n · ~a is continuous. To conclude the proof, simply apply the
approximation lemma above to infer ~n · ~a|Γ = 0. �
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3.3 Identities for the Stokes pressure

Given ~u ∈ H2 ∩H1
0 (Ω,RN ), recall that P(∇∇ · ~u) = 0, so that the Stokes

pressure defined in (10) satisfies

∇pS = ∆~u−∇∇ · ~u− P∆~u = (I − P)(∆−∇∇·)~u. (94)

Also recall that whenever ~a ∈ L2(Ω,RN ) and ∇ · ~a ∈ L2(Ω), ~n · ~a ∈ H−1/2(Γ)
by the trace theorem for H(div; Ω). If ∇ · ~a = 0 and ~n · ~a|Γ = 0, then we have〈
~a,∇φ

〉
= 0 for all φ ∈ H1(Ω) and this means (I − P)~a = 0. Thus, the Stokes

pressure is not affected by any part of the velocity field that contributes nothing
to ~n · ~a|Γ where ~a = (∆ −∇∇·)~u. Indeed, this means that the Stokes pressure
is not affected by the part of the velocity field in the interior of Ω away from
the boundary, nor is it affected by the normal component of velocity near the
boundary, since ~n · (∆−∇∇·)(~n~nt~u)|Γ = 0 by Lemma 3.

This motivates us to focus on the part of velocity near and parallel to the
boundary. We make the following decomposition. Let ρ : [0,∞) → [0, 1] be a
smooth decreasing function with ρ(t) = 1 for t < 1

2 and ρ(t) = 0 for t ≥ 1. For
small s > 0, the cutoff function given by ξ(x) = ρ(Φ(x)/s) is C3, with ξ = 1
when Φ(x) < 1

2s and ξ = 0 when Φ(x) ≥ s. Then we can write

~u = ~u⊥ + ~u‖ (95)

where
~u⊥ = (1− ξ)~u+ ξ~n~nt~u, ~u‖ = ξ(I − ~n~nt)~u. (96)

Since ~u⊥ = (~n~nt)~u in Ωs/2, with ~a⊥ = (∆−∇∇·)~u⊥ we have

~a⊥ ∈ L2(Ω,RN ), ∇ · ~a⊥ = 0 and ~n · ~a⊥|Γ = 0 (97)

by Lemma 3(ii). Hence
〈
~a⊥,∇φ

〉
= 0 for all φ ∈ H1(Ω), that is,

(I − P)(∆−∇∇·)~u⊥ = 0. (98)

Combining this with (94) and (95) proves part (i) of the following.

Lemma 5 Let Ω ⊂ RN be a bounded domain with C3 boundary, and let ~u ∈
H2 ∩H1

0 (Ω,RN ). Let pS and ~u‖ be defined as in (94) and (96) respectively.
Then

(i) The Stokes pressure is determined by ~u‖ according to the formula

∇pS = (I − P)(∆−∇∇·)~u‖. (99)

(ii) For any q ∈ H1(Ω) that satisfies ∆q = 0 in the sense of distributions,〈
∆~u‖ −∇pS,∇q

〉
= 0. (100)

(iii) In particular we can let q = pS in (ii), so
〈
∆~u‖ −∇pS,∇pS

〉
= 0 and

‖∆~u‖‖2 = ‖∆~u‖ −∇pS‖2 + ‖∇pS‖2. (101)
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Proof: We already proved (i). For (ii), note by Lemma 3(i) we have

∇ · ~u‖|Γ = 0, (102)

so ∇ · ~u‖ ∈ H1
0 (Ω), thus

〈
∇∇ · ~u‖,∇q

〉
= −

〈
∇ · ~u‖,∆q

〉
= 0. Now (i) entails〈

∇pS,∇q
〉

=
〈
∆~u‖,∇q

〉
. (103)

This proves (ii), and then (iii) follows by the L2 orthogonality. �

3.4 Proof of Theorem 1

Let ε > 0 and β = 2
3 + ε. We fix β1 < 1 such that 1 + ε0 := β(1 + 1

2β
2
1) > 1,

and fix s > 0 small so Theorem 2 (ii) applies in Ωs with this β1. Let ~u ∈
H2 ∩H1

0 (Ω,RN ) and define the Stokes pressure ∇pS by (10) and the decompo-
sition ~u = ~u⊥+~u‖ as in the previous subsection. Then by part (iii) of Lemma 5
we have

‖∆~u‖2 = ‖∆~u⊥‖2 + 2
〈
∆~u⊥,∆~u‖

〉
+ ‖∆~u‖ −∇pS‖2 + ‖∇pS‖2. (104)

We will establish the Theorem with the help of two further estimates.
Claim 1: For any ε1 > 0, there exists a constant C1 > 0 independent of ~u such
that 〈

∆~u⊥,∆~u‖
〉
≥ −ε1‖∆~u‖2 − C1‖∇~u‖2. (105)

Claim 2: For any ε1 > 0 there exists a constant C2 independent of ~u such that

‖∆~u‖ −∇pS‖2 ≥
β2

1

2
‖∇pS‖2 − ε1‖∆~u‖2 − C2‖∇~u‖2. (106)

Proof of claim 1: From the definitions in (96), we have

∆~u⊥ = ξ~n~nt∆~u+ (1− ξ)∆~u+R1, ∆~u‖ = ξ(I − ~n~nt)∆~u+R2, (107)

where ‖R1‖ + ‖R2‖ ≤ C‖∇~u‖ with C independent of ~u. Since I − ~n~nt =
(I − ~n~nt)2,(

ξ~n~nt∆~u+ (1− ξ)∆~u
)
·
(
ξ(I − ~n~nt)∆~u

)
= 0 + ξ(1− ξ)|(I − ~n~nt)∆~u|2 ≥ 0.

This means the leading term of
〈
∆~u⊥,∆~u‖

〉
is non-negative. Using the in-

equality |
〈
a, b
〉
| ≤ (ε1/C)‖a‖2 + (4C/ε1)‖b‖2 and the bounds on R1 and R2 to

estimate the remaining terms, it is easy to obtain (105).
Proof of claim 2: Recall that ~u‖ is supported in Ωs, and note

∆~u‖ = ξ(I − ~n~nt)∆~u+R3 (108)

where ‖R3‖ ≤ C‖∇~u‖. Since ~n · (I − ~n~nt)∆~u = 0 we find

‖~n ·∆~u‖‖Ωs ≤ C2‖∇~u‖ (109)
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with C2 > 0 independent of ~u. We use |a+ b|2 ≥ (1− ε2)|b|2 − |a|2/ε2 to get

‖∆~u‖ −∇pS‖2Ω ≥
∫

Ωc
s

|∇pS|2 +
∫

Ωs

|~n · (∆~u‖ −∇pS)|2

≥
∫

Ωc
s

|∇pS|2 + (1− ε2)
∫

Ωs

|~n · ∇pS|2 −
1
ε2

∫
Ωs

|~n ·∆~u‖|2. (110)

Next we use part (ii) of Theorem 2 with p0 = 0 and with β1

∫
Ωs
|~n ·∇p|2 added

to both sides, together with Lemma 2 and Poincaré’s inequality, to deduce that

β1

2

∫
Ωs

|∇pS|2 ≤
∫

Ωs

|~n ·∇pS|2 + ε1

∫
Ωs

|∆~u|2 + C

∫
Ωs

|∇~u|2. (111)

Taking 1− ε2 = β1 and combining (109), (110) and (111) establishes Claim 2.
Now we conclude the proof of the theorem. Combining the two claims with

(104), we get

(1 + 3ε1)‖∆~u‖2 ≥
(

1 +
β2

1

2

)
‖∇pS‖2 − (C2 + 2C1)‖∇~u‖2. (112)

Multiplying by β and taking ε1 > 0 so that 3ε1 < ε0 concludes the proof. �

3.5 The space of Stokes pressures

According to (21)–(22), the space of Stokes pressures, obtainable via (10) from
velocity fields ~u ∈ H2 ∩H1

0 (Ω,RN ), can be characterized as the space

Sp := {p ∈ H1(Ω)/R | ∆p = 0 in Ω and ~n ·∇p|Γ ∈ SΓ}, (113)

where SΓ is the subspace of H−1/2(Γ) given by

SΓ := {f = ~n · (∆−∇∇·)~u|Γ | ~u ∈ H2 ∩H1
0 (Ω,RN )}. (114)

The Stokes pressure p with zero average is determined uniquely by f = ~n·∇p|Γ ∈
SΓ, with ‖p‖H1(Ω) ≤ C‖f‖H−1/2(Γ) by the Lax-Milgram lemma.

The space SΓ may be characterized as follows.

Theorem 3 Assume Ω ⊂ RN is a bounded, connected domain and its boundary
Γ is of class C3. Denote the connected components of Γ by Γi, i = 1, . . . ,m.
Then

SΓ = {f ∈ H−1/2(Γ) |
∫

Γi

f = 0 for i = 1, . . . ,m},

and moreover, the map ~u 7→ ~n · (∆ − ∇∇·)~u|Γ from H2 ∩H1
0 (Ω,RN ) to SΓ

admits a bounded right inverse.

Proof. First we check the necessity of the integral conditions. Let u ∈
H2 ∩H1

0 (Ω,RN ) and let f = ~n · (∆ − ∇∇·)~u|Γ. For each connected compo-
nent Γi of Γ, there is an si > 0 small enough and a smooth cut-off function ρi
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defined in Ω which satisfies ρi(x) = 1 when dist(x,Γi) < si and ρi(x) = 0 when
dist(x,Γj) < si for all j 6= i. Let ~a = (∆ − ∇∇·)(ρi~u). Then ~a ∈ L2(Ω,RN )
and ∇ · ~a = 0, so ∫

Γi

f =
∫

Γ

~n · ~a =
∫

Ω

∇ · ~a = 0. (115)

Next, let f ∈ H−1/2(Γ) with
∫
Γi
f = 0 for all i. Treating each boundary

component separately, we can then solve the problem

∆Γψ = −f on Γ,
∫

Γi

ψ = 0 for i = 1, . . . ,m, (116)

where ∆Γ is the (positive) Laplace-Beltrami operator on Γ. Denote the mapping
f 7→ ψ by T . Then T : H−1(Γ) → H1(Γ) is bounded ([Au, theorem 1.71, theo-
rem 4.7], [Ta, p. 306, Proposition 1.6]). Also T : L2(Γ) → H2(Γ) is bounded, by
elliptic regularity theory [Ta, p. 306, Proposition 1.6]. So, interpolation implies
(see [LM, vol I, p. 37, Remark 7.6])

‖ψ‖H3/2(Γ) ≤ C‖f‖H−1/2(Γ). (117)

Now by an inverse trace theorem [RR, Theorem 6.109], there exists a map
ψ 7→ q ∈ H3(Ω) with

q = 0 and ~n ·∇q = ψ on Γ, ‖q‖H3(Ω) ≤ C‖ψ‖H3/2(Γ). (118)

We may assume q is supported in a small neighborhood of Γ. Define

~u = (I − ~n~nt)∇q. (119)

Then f 7→ ~u is bounded from SΓ to H2 ∩H1
0 (Ω,RN ). We claim

~n · (∆−∇∇·)~u = f on Γ. (120)

The proof of this claim amounts to showing, by calculations similar to those
in the proof of Lemma 3, that the normal derivative ~n ·∇ and normal projection
~n~nt commute on the boundary with the tangential gradient and divergence
operators (I − ~n~nt)∇ and ∇ · (I − ~n~nt) for the functions involved.

First, since ~n · ~u = 0, by expanding ∆(~n · ~u) we get

~n ·∆~u = −(∆~n) · ~u− 2∇~n : ∇~u = 0 on Γ, (121)

since for each i, ∇ni is tangential and ∇ui is normal to Γ — indeed, using
∂jni = ∂inj and (86) and (87), we have that

∇~n : ∇~u = (∂jni)(∂jui) = (∂inj)(njnk∂kui) = 0 on Γ. (122)

Next we calculate in Ω that

~n ·∇∇ · ~u = ∇ · (~n ·∇~u)−∇~n : ∇~u. (123)
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Note that ~n ·∇(~n~nt) = 0 by (86), so ~n ·∇ commutes with I − ~n~nt in Ω. Then
since ~u = (I − ~n~nt)~u from (119) we get

~n ·∇~u = (I − ~n~nt)(~n ·∇)~u = (I − ~n~nt)(~n ·∇)∇q. (124)

Now
(~n ·∇)∇q = ∇(~n ·∇q)− ~a (125)

where
ai = (∂inj)(∂jq) = (∂jni)(∂jq) (126)

This quantity lies in H2(Ω) and vanishes on Γ since ∇q = (~n~nt)∇q on Γ. (This
can be proved by approximation using Lemma 4.) Using part (i) of Lemma 3,
we have that ∇ · (I − ~n~nt)~a = 0 on Γ. Combining (121)–(125) we conclude that

~n · (∆−∇∇·)~u = −∇ · (I − ~n~nt)∇(~n ·∇q) on Γ. (127)

But it is well known that at any point x where Φ(x) = r ∈ (0, s), for any smooth
function φ on Ωs,

∇ · (I − ~n~nt)∇φ = ∆φ− (∇ · ~n)(~n ·∇φ)− (~n ·∇)2φ = −∆Γr (φ|Γr ). (128)

where ∆Γr
is the Laplace-Beltrami operator on Γr. So taking r → 0 we see that

the right hand side of (127) is exactly −∆Γ(~n ·∇q|Γ). So by (116) and (118) we
have established the claim in (120). This finishes the proof. �

Remark 1. Given a velocity field ~u ∈ H2 ∩H1
0 (Ω,R3), the associated Stokes

pressure is determined by the normal component at the boundary of the curl
of the vorticity ω = ∇ × ~u, which is a vector field in H1(Ω,R3). A question
related to Theorem 3 is whether the space SΓ of such boundary values ~n ·∇×ω
is constrained in any way, as compared to the space of boundary values ~n ·∇×~v
where ~v ∈ H1(Ω,R3) is arbitrary.

The answer is no. In [Te1, Appendix I, Proposition 1.3], Temam proves

∇×H1(Ω,R3) = {~g ∈ L2(Ω,R3) | ∇ · ~g = 0,
∫

Γi

~n · ~g = 0 ∀i}. (129)

Clearly SΓ ⊂ ~n · ∇ × H1(Ω,R3) by (114). For the other direction, let ~v ∈
H1(Ω,R3) be arbitrary, and let f = ~n · ∇ × ~v|Γ. By (129) or otherwise, f ∈
H−1/2(Γ) and

∫
Γi
f = 0 for all i, hence f ∈ SΓ. This shows that for N = 3,

SΓ = ~n · ∇ ×H1(Ω,R3). (130)

A related point is that for N = 3, the space of Stokes pressure gradients
∇Sp can be characterized as the space of simultaneous gradients and curls.

Theorem 4 Assume Ω ⊂ R3 is a bounded, connected domain and its boundary
Γ is of class C3. Then

∇Sp = ∇H1(Ω) ∩∇×H1(Ω,R3). (131)
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Proof. Indeed, ∇Sp ⊂ ∇×H1 by (129) and Theorem 3. On the other hand, if
~g = ∇×~v = ∇p then ∆p = ∇·~g = 0 and ~n ·∇p|Γ ∈ SΓ by (129) and Theorem 3,
so ∇p ∈ ∇Sp. �

Remark 2. In the book [Te1] (see Theorem 1.5) Temam establishes the or-
thogonal decomposition L2(Ω,RN ) = H ⊕H1 ⊕H2, which means that for any
g ∈ L2(Ω,RN ),

~g = P~g +∇q +∇∆−1∇ · ~g, (132)

where q satisfies ∆q = 0 and ~n · ∇q|Γ = ~n · (~g − ∇∆−1∇ · ~g). By contrast, we
have shown

~g = P~g +∇p+∇∇ ·∆−1~g (133)

where p satisfies ∆p = 0 and ~n · ∇p|Γ = ~n · (~g−∇∇ ·∆−1~g), i.e., p is the Stokes
pressure associated with ∆−1~g. Thus the map ~g 7→ ∇p−∇q is the commutator
∇∆−1∇·−∇∇·∆−1. The decomposition (132) is orthogonal, and q satisfies

〈
~n ·

∇q, 1
〉
Γ

= 0. In our decomposition (133), the gradient terms are not orthogonal,
but the Stokes pressure term enjoys the bounds stated in Corollary 1, and if Γ
is not connected, it has the extra property that

〈
~n · ∇p, 1

〉
Γi

= 0 for every i.

4 Unconditional stability of time discretization
with pressure explicit

In this section we exploit Theorem 1 to establish the unconditional stability of
a simple time discretization scheme for the initial-boundary-value problem for
(6), our unconstrained formulation of the Navier-Stokes equations. We focus
here on the case of two and three dimensions. In subsequent sections we shall
proceed to prove an existence and uniqueness theorem based on this stability
result.

Let Ω be a bounded domain in RN with boundary Γ of class C3. We consider
the initial-boundary-value problem

∂t~u+ ~u·∇~u+∇pE + ν∇pS = ν∆~u+ ~f (t > 0, x ∈ Ω), (134)
~u = 0 (t ≥ 0, x ∈ Γ), (135)

~u = ~uin (t = 0, x ∈ Γ). (136)

We assume ~uin ∈ H1
0 (Ω,RN ) and ~f ∈ L2(0, T ;L2(Ω,RN )) for some given T > 0.

As before, the Euler and Stokes pressures pE and pS are defined by the relations

P(~u·∇~u− ~f) = ~u·∇~u− ~f +∇pE, (137)

P(−∆~u) = −∆~u+∇(∇ · ~u) +∇pS. (138)

Theorem 1 tells us that the Stokes pressure can be strictly controlled by
the viscosity term. This allows us to treat the pressure term explicitly, so
that the update of pressure is decoupled from that of velocity. This can make
corresponding fully discrete numerical schemes very efficient (see [JL]). Here,
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through Theorem 1, we will prove that the following spatially continuous time
discretization scheme has surprisingly good stability properties:

~un+1 − ~un

∆t
− ν∆~un+1 = ~fn − ~un · ∇~un −∇pn

E − ν∇pn
S , (139)

∇pn
E = (I − P)(~fn − ~un · ∇~un), (140)

∇pn
S = (I − P)∆~un −∇(∇ · ~un), (141)

~un
∣∣
Γ

= 0. (142)

We set
~fn =

1
∆t

∫ (n+1)∆t

n∆t

~f(t) dt, (143)

and take ~u0 ∈ H2 ∩H1
0 (Ω,RN ) to approximate ~uin in H1

0 (Ω,RN ). It is evident
that for all n = 0, 1, 2, . . ., given ~un ∈ H2 ∩ H1

0 one can determine ∇pn
E ∈ L2

and ∇pn
S ∈ L2 from (140) and (141) and advance to time step n+ 1 by solving

(139) as an elliptic boundary-value problem with Dirchlet boundary values to
obtain ~un+1.

This simple scheme is related to one studied by Timmermans et al. [Ti]. In
the time-differencing scheme described in [Ti] for the linear Stokes equation, the
pressure pn = pn

E + νpn
S is updated in nearly equivalent fashion, if one omits the

velocity correction step that imposes zero divergence, and uses first-order time
differences in (15) and (18) of [Ti]. Also see [Pe, GuS, JL].

Let us begin making estimates — our main result is stated as Theorem 5
below. Dot (139) with −∆un+1 and use (140) and ‖I − P‖ ≤ 1 to obtain

1
2∆t

(
‖∇~un+1‖2 − ‖∇~un‖2 + ‖∇~un+1 −∇~un‖2

)
+ ν‖∆~un+1‖2

≤ ‖∆~un+1‖
(
2‖~fn − ~un · ∇~un‖+ ν‖∇pn

S ‖
)

≤ ε1
2
‖∆~un+1‖2 +

2
ε1
‖~fn − ~un · ∇~un‖2 +

ν

2
(
‖∆~un+1‖2 + ‖∇pn

S ‖2
)
(144)

for any ε1 > 0. (This is not optimal for ∇pn
E but is convenient.) This gives

1
∆t

(
‖∇~un+1‖2 − ‖∇~un‖2

)
+ (ν − ε1)‖∆~un+1‖2

≤ 8
ε1

(
‖~fn‖2 + ‖~un · ∇~un‖2

)
+ ν‖∇pn

S ‖2. (145)

Fix any β with 2
3 < β < 1. By Theorem 1 one has

ν‖∇pn
S ‖2 ≤ νβ‖∆~un‖2 + νCβ‖∇~un‖2. (146)
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Using this in (145), one obtains

1
∆t

(
‖∇~un+1‖2−‖∇~un‖2

)
+ (ν − ε1)

(
‖∆~un+1‖2 − ‖∆~un‖2

)
+ (ν − ε1 − νβ)‖∆~un‖2

≤ 8
ε1

(
‖~fn‖2 + ‖~un · ∇~un‖2

)
+ νCβ‖∇~un‖2. (147)

At this point there are no remaining difficulties with controlling the pres-
sure. It remains only to use the viscosity to control the nonlinear term. We
focus on the physically most interesting cases N = 2 and 3. We make use of
Ladyzhenskaya’s inequalities [La]∫

RN

g4 ≤ 2
(∫

RN

g2

)(∫
RN

|∇g|2
)

(N = 2), (148)∫
RN

g4 ≤ 4
(∫

RN

g2

)1/2(∫
RN

|∇g|2
)3/2

(N = 3), (149)

valid for g ∈ H1(RN ) with N = 2 and 3 respectively, together with the fact that
the standard bounded extension operator H1(Ω) → H1(RN ) is also bounded in
L2 norm, to infer that for all g ∈ H1(Ω),

‖g‖2L4 ≤ C‖g‖L2‖g‖H1 (N = 2), (150)

‖g‖2L3 ≤ ‖g‖2/3
L2 ‖g‖4/3

L4 ≤ C‖g‖L2‖g‖H1 (N = 3). (151)

Using thatH1(Ω) embeds into L4 and L6, these inequalities lead to the estimates

∫
Ω

|~un · ∇~un|2 ≤

{
‖~un‖2L4‖∇~un‖2L4 ≤ C‖u‖L2‖∇~un‖2L2‖∇~un‖H1 (N = 2),

‖~un‖2L6‖∇~un‖2L3 ≤ C‖∇~un‖3L2‖∇~un‖H1 (N = 3).
(152)

By the elliptic regularity estimate ‖∇~u‖H1 ≤ ‖~u‖H2 ≤ C‖∆~u‖, we conclude

‖~un · ∇~un‖2 ≤

{
ε2‖∆~un‖2 + 4Cε−1

2 ‖~un‖2‖∇~un‖4 (N = 2),

ε2‖∆~un‖2 + 4Cε−1
2 ‖∇~un‖6 (N = 2 or 3).

(153)

for any ε2 > 0. Plug this into (147) and take ε1, ε2 > 0 satisfying ν − ε1 > 0
and ε := ν − ε1 − νβ − 8ε2/ε1 > 0. We get

1
∆t
(
‖∇~un+1‖2 − ‖∇~un‖2

)
+ (ν − ε1)

(
‖∆~un+1‖2 − ‖∆~un‖2

)
+ ε‖∆~un‖2

≤ 8
ε1
‖~fn‖2 +

32C
ε1ε2

‖∇~un‖6 + νCβ‖∇~un‖2. (154)

A simple discrete Gronwall-type argument leads to our main stability result:
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Theorem 5 Let Ω be a bounded domain in RN (N = 2 or 3) with C3 bound-
ary, and assume ~f ∈ L2(0, T ;L2(Ω,RN )) for some given T > 0 and ~u0 ∈
H1

0 (Ω,RN )∩H2(Ω,RN ). Consider the time-discrete scheme (139)-(143). Then
there exist positive constants T ∗ and C3, such that whenever n∆t ≤ T ∗, we have

sup
0≤k≤n

‖∇~uk‖2 +
n∑

k=0

‖∆~uk‖2∆t ≤ C3, (155)

n−1∑
k=0

(∥∥∥∥~uk+1 − ~uk

∆t

∥∥∥∥2

+ ‖~uk · ∇~uk‖2
)

∆t ≤ C3. (156)

The constants T ∗ and C3 depend only upon Ω, ν and

M0 := ‖∇~u0‖2 + ν∆t‖∆~u0‖2 +
∫ T

0

‖~f‖2.

Proof: Put

zn = ‖∇~un‖2 + (ν − ε1)∆t‖∆~un‖2, wn = ε‖∆~un‖2, bn = ‖~fn‖2, (157)

and note that from (143) we have that as long as n∆t ≤ T ,

n−1∑
k=0

‖~fk‖2∆t ≤
∫ T

0

|~f(t)|2 dt. (158)

Then by (154),

zn+1 + wn∆t ≤ zn + C∆t(bn + zn + z3
n), (159)

where we have replaced max{8/ε1, 32C/(ε1ε2), νCβ} by C. Summing from 0 to
n− 1 and using (158) yields

zn +
n−1∑
k=0

wk∆t ≤ CM0 + C∆t
n−1∑
k=0

(zk + z3
k) =: yn. (160)

The quantities yn so defined increase with n and satisfy

yn+1 − yn = C∆t(zn + z3
n) ≤ C∆t(yn + y3

n). (161)

Now set F (y) = ln(
√

1 + y2/y) so that F ′(y) = −(y + y3)−1. Then on (0,∞),
F is positive, decreasing and convex, and we have

F (yn+1)− F (yn) = F ′(ξn)(yn+1 − yn) ≥ −yn+1 − yn

yn + y3
n

≥ −C∆t, (162)

whence
F (yn) ≥ F (y0)− Cn∆t = F (CM0)− Cn∆t. (163)
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Choosing any T ∗ > 0 so that C∗ := F (CM0)− CT ∗ > 0, we infer that as long
as n∆t ≤ T ∗ we have yn ≤ F−1(C∗), and this together with (160) yields the
stability estimate (155).

Now, using (153) and elliptic regularity, we get from (155) that

n∑
k=0

‖~uk · ∇~uk‖2∆t ≤ C
n∑

k=0

‖∇~uk‖2L2‖∇~uk‖2H1∆t ≤ C
n∑

k=0

‖∆~uk‖2∆t ≤ C.

(164)
Then the difference equation (139) yields

n−1∑
k=0

∥∥∥∥~uk+1 − ~uk

∆t

∥∥∥∥2

∆t ≤ C. (165)

This yields (156) and finishes the proof of the Theorem. �

5 Existence and uniqueness of strong solutions

The stability estimates in Theorem 5 lead directly to the following existence and
uniqueness theorem for strong solutions of the unconstrained formulation (6) of
the Navier-Stokes equations. Regarding the constrained Navier-Stokes equa-
tions there are of course many previous works; see [Am] for a recent comprehen-
sive treatment. For unconstrained formulations of the Navier-Stokes equations
with a variety of boundary conditions including the one considered in the present
paper, Grubb and Solonnikov [GS1, GS2] lay out a general existence theory in
anisotropic Sobolev spaces using a theory of pseudodifferential initial-boundary-
value problems developed by Grubb.

Theorem 6 Let Ω be a bounded domain in R3 with boundary Γ of class C3,
and let ~f ∈ L2(0, T ;L2(Ω,RN )), ~uin ∈ H1

0 (Ω,RN ). Then, there exists T ∗ > 0
depending only upon Ω, ν and M1 := ‖∇~uin‖2+

∫ T

0
‖~f‖2, so that a unique strong

solution of (134)-(136) exists on [0, T ∗], with

~u ∈ L2(0, T ∗;H2(Ω,RN )) ∩H1(0, T ∗;L2(Ω,RN )),

∇p = ∇pE + ν∇pS ∈ L2(0, T ∗;L2(Ω,RN )),

where pE and pS are as in (9) and (10). Moreover, ~u ∈ C([0, T ∗],H1(Ω,RN )),
and ∇ · ~u ∈ C∞((0, T ∗], C∞(Ω)) is a classical solution of the heat equation with
no-flux boundary conditions. The map t 7→ ‖∇ · ~u‖2 is smooth for t > 0 and we
have the dissipation identity

d

dt

1
2
‖∇ · ~u‖2 + ν‖∇(∇ · ~u)‖2 = 0. (166)

Proof of existence: We shall give a simple proof of existence based on the
finite difference scheme considered in section 4, using a classical compactness
argument [Ta1, Te1, LM]. However, in contrast to similar arguments in other
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sources, for example by Temam [Te1] for a time-discrete scheme with implicit
differencing of pressure terms, we do not make any use of regularity theory for
stationary Stokes systems.

First we smooth the initial data. Given ~uin ∈ H1
0 (Ω,RN ) and ∆t > 0,

determine ~u0 in H1
0 ∩ H2(Ω,RN ) by solving (I − ∆t∆)~u0 = ~uin. An energy

estimate yields

‖∇~u0‖2 + ∆t‖∆~u0‖2 ≤ ‖∇~uin‖‖∇~u0‖ ≤ ‖∇~uin‖2.

Then ‖∆t∆~u0‖2 = O(∆t) as ∆t → 0, so ~u0 → ~uin strongly in L2 and weakly
in H1. The stability constant C3 in Theorem 5 is then uniformly bounded
independent of ∆t.

We define the discretized solution ~un by (139)-(142) of section 4, and note

~un+1 − ~un

∆t
+ P(~un · ∇~un − ~fn − ν∆~un) = ν∆(~un+1 − ~un) + ν∇∇ · ~un. (167)

With tn = n∆t, we put ~u∆t(tn) = ~U∆t(tn) = ~un for n = 0, 1, 2, . . ., and
define ~u∆t(t) and ~U∆t(t) on each subinterval [tn, tn + ∆t) through linear inter-
polation and as piecewise constant respectively:

~u∆t(tn + s) = ~un + s

(
~un+1 − ~un

∆t

)
, s ∈ [0,∆t), (168)

~U∆t(tn + s) = ~un, s ∈ [0,∆t). (169)

Then (167) means that whenever t > 0 with t 6= tn,

∂t~u∆t +P(~U∆t · ∇~U∆t − ~f∆t − ν∆~U∆t) = ν∆(~U∆t(·+ ∆t)− ~U∆t) + ν∇∇ · ~U∆t,
(170)

where ~f∆t(t) = ~fn for t ∈ [tn, tn + ∆t).
We will use the simplified notation X(Y ) to denote a function space of the

form X([0, T ∗], Y (Ω,RN )), and we let Q = Ω × [0, T ∗] where T ∗ is given by
Theorem 5. The estimates in Theorem 5 say that ~u∆t is bounded in the Hilbert
space

V0 := L2(H2 ∩H1
0 ) ∩H1(L2), (171)

and also that ~U∆t is bounded in L2(H2), uniformly for ∆t > 0. Moreover,
estimate (155) says ~u∆t is bounded in C(H1). This is also a consequence of the
embedding V0 ↪→ C(H1), see [Ta1, p. 42] or [Ev, p. 288].

Along some subsequence ∆tj → 0, then, we have that ~u∆t converges weakly
in V0 to some ~u ∈ V0, and ~U∆t and ~U∆t(· + ∆t) converge weakly in L2(H2)
to some ~U1 and ~U2 respectively. Since clearly V0 ↪→ H1(Q), and since the
embedding H1(Q) ↪→ L2(Q) is compact, we have that ~u∆t → ~u strongly in
L2(Q). Note that by estimate (156),

‖~u∆t − ~U∆t‖2L2(Q) ≤ ‖~U∆t(·+ ∆t)− ~U∆t‖2L2(Q) =
n−1∑
k=0

‖~un+1 − ~un‖2∆t ≤ C∆t2.

(172)
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Therefore ~U∆t(· + ∆t) and ~U∆t converge to ~u strongly in L2(Q) also, so ~U1 =
~U2 = ~u.

We want to show ~u is a strong solution of (134) by passing to the limit in
(170). From the definition of ~fn in (143), it is a standard result which can be
proved by using a density argument that

‖~f − ~f∆t‖2L2(Q) → 0 as ∆t→ 0.

We are now justified in passing to the limit weakly in L2(Q) in all terms in
(170) except the nonlinear term, which (therefore) converges weakly to some
~w ∈ L2(Q). But since ∇~U∆t converges to ∇~u weakly and ~U∆t to ~u strongly
in L2(Q), we can conclude ~U∆t · ∇~U∆t converges to ~u · ∇~u in the sense of
distributions on Q. So ~w = ~u · ∇~u, and upon taking limits in (170) it follows
that

∂t~u+ P
(
~u · ∇~u− ~f − ν∆~u

)
= ν∇∇ · ~u. (173)

That is, ~u is indeed a strong solution of (134). That ~u(0) = ~uin is a consequence
of the continuity of the map ~u→ ~u(0) from V0 through C(H1) to H1(Ω,RN ).

It remains to study ∇ · ~u. Dot (173) with ∇φ, φ ∈ H1(Ω). We get∫
Ω

∂t~u · ∇φ = ν

∫
Ω

∇(∇ · ~u) · ∇φ. (174)

This says that w = ∇ · ~u is a weak solution of the heat equation with Neumann
boundary conditions:

∂tw = ν∆w in Ω, ~n ·∇w = 0 on Γ. (175)

Indeed, the operator A := ν∆ defined on L2(Ω) with domain

D(A) = {w ∈ H2(Ω) | ~n · ∇w = 0 on Γ} (176)

is self-adjoint and non-positive, so generates an analytic semigroup. For any
φ ∈ D(A) we have that t 7→

〈
w(t), φ

〉
= −

〈
u(t),∇φ

〉
is absolutely continuous,

and using (174) we get (d/dt)
〈
w(t), φ

〉
=
〈
w(t), Aφ

〉
for a. e. t. By Ball’s charac-

terization of weak solutions of abstract evolution equations [Ba], w(t) = eAtw(0)
for all t ∈ [0, T ∗]. It follows w ∈ C([0, T ∗], L2(Ω)), and w(t) ∈ D(Am) for every
m > 0 [Pa, theorem 6.13]. Since Amw(t) = eA(t−τ)Amw(τ) if 0 < τ < t we infer
that for 0 < t ≤ T ∗, w(t) is analytic in t with values in D(Am). Using interior
estimates for elliptic equations, we find w ∈ C∞((0, T ∗], C∞(Ω)) as desired.
The dissipation identity follows by dotting with w.

This finishes the proof of existence. �
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Proof of uniqueness: Suppose ~u1 and ~u2 are both solutions of (134)–(136)
belonging to V0. Put ~u = ~u1−~u2 and ∇pS = (I−P)(∆−∇∇·)~u. Then ~u(0) = 0
and

∂t~u+ P
(
~u1 · ∇~u+ ~u · ∇~u2) = ν∆~u− ν∇pS. (177)

Dot with −∆~u and use Theorem 1 to get〈
ν∆~u− ν∇pS,−∆~u

〉
≤ −ν

2
‖∆~u‖2 +

ν

2
‖∇pS‖2 ≤ −νβ

2
‖∆~u‖2 +C‖∇~u‖2. (178)

Next, use the Cauchy-Schwarz inequality for the nonlinear terms, estimating
them as follows in a manner similar to (150)-(152), using that ~u1 and ~u2 are a
priori bounded in H1 norm:

‖~u1 · ∇~u‖ ‖∆~u‖ ≤ C‖∇~u1‖‖∇~u‖1/2‖∆~u‖3/2 ≤ ε‖∆~u‖2 + C‖∇~u‖2, (179)

‖~u · ∇~u2‖ ‖∆~u‖ ≤ C‖∇~u‖‖∇~u2‖H1‖∆~u‖ ≤ ε‖∆~u‖2 + C‖∆~u2‖2‖∇~u‖2. (180)

Lastly, since ~u ∈ V0 we infer that
〈
∂t~u,−∆~u

〉
∈ L1(0, T ) and t 7→ ‖∇~u‖2 is

absolutely continuous with〈
∂t~u,−∆~u

〉
=

1
2
d

dt
‖∇~u‖2. (181)

This can be shown by using the density of smooth functions in V0; see [Ev, p.
287] for a detailed proof of a similar result.

Through this quite standard-style approach, we get

d

dt
‖∇~u‖2 + α‖∆~u‖2 ≤ C(1 + ‖∆~u2‖2)‖∇~u‖2 (182)

for some positive constants α and C. Because ‖∆~u2‖2 ∈ L1(0, T ), by Gronwall’s
inequality we get ‖∇~u‖ ≡ 0. This proves the uniqueness. �

Since the interval of existence [0, T∗] depends only upon M1, in standard
fashion we may extend the unique strong solution to a maximal interval of time,
and infer that the approximations considered above converge to this solution up
to the maximal time.

Corollary 2 Given the assumptions of Theorem 6, system (134)-(136) admits
a unique strong solution ~u on a maximal interval [0, Tmax) with the property that
if Tmax < T then

‖~u(t)‖H1 →∞ as t→ Tmax. (183)

For every T̂ ∈ [0, Tmax), the approximations ~u∆t constructed in (168) converge
to ~u weakly in

L2([0, T̂ ],H2 ∩H1
0 (Ω,RN )) ∩H1([0, T̂ ], L2(Ω,RN ))

and strongly in L2([0, T̂ ]× Ω,RN ).
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6 Unconditional stability and convergence for
C1/C0 finite element methods without inf-sup
conditions

The simplicity of the stability proof for the time-discrete scheme in section 4
allows us to easily establish the unconditional stability and convergence (up to
the maximal time of existence for the strong solution) of corresponding fully
discrete finite-element methods that use C1 elements for the velocity field and
C0 elements for pressure. To motivate the discretization, we write the uncon-
strained Navier-Stokes formulation (11) in weak form as follows, in terms of
total pressure p = pE + νpS:〈

~ut +∇p− ν∆~u+ ~u·∇~u− ~f,∆~v
〉

= 0 ∀v ∈ H2 ∩H1
0 (Ω,RN ), (184)〈

∇p+ ν∇∇ · ~u− ν∆~u+ ~u·∇~u− ~f,∇φ
〉

= 0 ∀φ ∈ H1(Ω). (185)

We suppose that for some sequence of positive values of h approaching zero,
Xh ⊂ H2 ∩H1

0 (Ω,RN ) is a finite-dimensional space containing the approximate
velocity field, and suppose Yh ⊂ H1(Ω)/R is a finite-dimensional space contain-
ing approximate pressures. We assume these spaces have the approximation
property that

∀~v ∈ H2 ∩H1
0 (Ω,RN ) ∀h ∃~vh ∈ Xh, ‖∆(~v − ~vh)‖ → 0 as h→ 0, (186)

∀φ ∈ H1(Ω)/R ∀h ∃φh ∈ Yh, ‖∇(φ− φh)‖ → 0 as h→ 0. (187)

As we have emphasized in the introduction to this paper, we impose no inf-sup
condition between the spaces Xh and Yh. (We remark that in general, practical
finite element methods usually use spaces defined on domains that approximate
the given Ω. For simplicity here we suppose Ω can be kept fixed, such that
finite-element spaces Xh and Yh can be found as described with C1 elements
for velocity and C0 elements for pressure. Though generally impractical, in
principle this should be possible whenever Ω has a piecewise polynomial C3

boundary.)
We discretize (184)-(185) in a straightforward way, implicitly only in the

viscosity term and explicitly in the pressure and nonlinear terms. The resulting
scheme was also derived in [JL] and is equivalent to a space discretization of
the scheme in (139)–(143). Given the approximate velocity ~uh

n at the n-th time
step, we determine pn

h ∈ Yh and ~un+1
h ∈ Xh by requiring〈

∇pn
h + ν∇∇ · ~un

h − ν∆~un
h + ~un

h ·∇~un
h − ~fn,∇φh

〉
= 0 ∀φh ∈ Yh, (188)〈∇~un+1

h −∇~un
h

∆t
,∇~vh

〉
+
〈
ν∆~un+1

h ,∆~vh

〉
=
〈
∇pn

h + ~un
h ·∇~un

h − ~fn,∆~vh

〉
∀~vh ∈ Xh. (189)

Stability. We are to show the scheme above is unconditionally stable. First,
we take φh = ph in (188). Due to the fact that〈

P(∆−∇∇·)~un
h,∇pn

h

〉
= 0,
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we directly deduce from the Cauchy-Schwarz inequality that

‖∇pn
h‖ ≤ ‖ν∇pS(un

h)‖+ ‖~un
h ·∇~un

h − ~fn‖ (190)

where
∇pS(un

h) = (I − P)(∆−∇∇·)~un
h (191)

is the Stokes pressure associated with ~un
h. (Note ∇pS(un

h) need not lie in the
space Yh). Now, taking ~vh = ~un+1

h in (189) and arguing just as in (144), we
obtain an exact analog of (145), namely

1
∆t

(
‖∇~un+1

h ‖2 − ‖∇~un
h‖2
)

+ (ν − ε1)‖∆~un+1
h ‖2

≤ 8
ε1

(
‖~fn‖2 + ‖~un

h · ∇~un
h‖2
)

+ ν‖∇pS(~un
h)‖2. (192)

Proceeding now exactly as in section 4 leads to the following unconditional
stability result.

Theorem 7 Let Ω be a bounded domain in RN (N = 2 or 3) with C3 boundary,
and suppose spaces Xh ⊂ H2 ∩H1

0 (Ω,RN ), Yh ⊂ H1(Ω)/R satisfy (186)–(187).
Assume ~f ∈ L2(0, T ;L2(Ω,RN )) for some given T > 0 and ~u0

h ∈ Xh. Consider
the finite-element scheme (188)-(189) with (143). Then there exist positive con-
stants T ∗ and C4, such that whenever n∆t ≤ T ∗, we have

sup
0≤k≤n

‖∇~uk
h‖2 +

n∑
k=0

‖∆~uk
h‖2∆t ≤ C4, (193)

n−1∑
k=0

∥∥∥∥∥~uk+1
h − ~uk

h

∆t

∥∥∥∥∥
2

+ ‖~uk
h · ∇~uk

h‖2
∆t ≤ C4. (194)

The constants T ∗ and C4 depend only upon Ω, ν and

M0h := ‖∇~u0
h‖2 + ν∆t‖∆~u0

h‖2 +
∫ T

0

‖~f‖2.

Convergence. We prove the convergence of the finite-element scheme de-
scribed above by taking h→ 0 to obtain the solution of the time-discrete scheme
studied in section, then ∆t→ 0 as before. Because of the uniqueness of the so-
lution of the time-discrete scheme and of the strong solution of the PDE, it
suffices to prove convergence for some subsequence of any given sequence of val-
ues of h tending toward 0. The bounds obtained in Theorem 7 make this rather
straightforward.

Fix ∆t > 0. The bounds in Theorem 7 and in (190) imply that for all positive
integers n < T∗/∆t, the ~un

h are bounded in H2 ∩H1
0 (Ω,RN ) and the ∇pn

h are
bounded in L2(Ω,RN ) uniformly in h. So from any sequence of h approaching
zero, we may extract a subsequence along which we have weak limits

~un
h ⇀ ~un in H2(Ω,RN ), ∇pn

h ⇀ ∇pn, ~un
h · ∇~un

h ⇀ ~wn in L2(Ω,RN ) (195)



Divorcing pressure from viscosity 32

for all n. Then ~un
h → ~un strongly in H1

0 (Ω,RN ) and so ~wn = ~un · ∇~un since the
nonlinear term converges strongly in L1.

Now, for any ~v ∈ H2 ∩H1
0 (Ω,RN ) and φ ∈ H1(Ω), by assumption there exist

~vh ∈ Xh, φh ∈ H1(Ω) such that ~vh → ~v strongly in H2(Ω,RN ) and ∇φh → ∇φ
strongly in L2(Ω,RN ). Applying these convergence properties in (188)–(189)
yields that the weak limits in (195) satisfy〈

∇pn + ν∇∇ · ~un − ν∆~un + ~un ·∇~un − ~fn,∇φ
〉

= 0, (196)〈~un+1 − ~un

∆t
− ν∆~un+1 +∇pn + ~un ·∇~un − ~fn,∆~v

〉
= 0. (197)

But this means exactly that ~un satisfies (139) with pn = pn
E +νpn

S , where pn
E and

pn
S are given by (140)–(141). So in the limit h→ 0 we obtain the solution of the

time-discrete scheme studied in section (4). Then the limit ∆t → 0 yields the
unique strong solution on a maximal time interval as established in section 5.

7 Semigroup approach for the homogeneous lin-
ear case

There are many other approaches to existence theory for the Navier-Stokes
equations, of course — Galerkin’s method, mollification, semigroup theory, etc.
We will not discuss any of them here, except to note that the linearization of the
unconstrained system (11) can be treated easily by analytic semigroup theory
using Theorem 1. Take ν = 1 without loss of generality, and consider (11)
without the nonlinear and forcing terms, i.e., consider the unconstrained Stokes
equation

~ut −∆~u+∇pS = 0 (t > 0, x ∈ Ω), (198)

with the no-slip boundary condition (135) and initial condition (136), where
∇pS is given by (10) as before. In the space X = L2(Ω,RN ) define operators
B0 and B1 by

B0~u = −∆~u, B1~u = ∇pS = (I − P)∆~u−∇∇ · ~u, (199)

with domain D(B0) = D(B1) = H2 ∩H1
0 (Ω,RN ). Then B0 is a positive self-

adjoint operator in X with compact resolvent, and by using Theorem 1 together
with the interpolation estimate

‖∇~u‖ ≤ ε‖∆~u‖+ Cε‖u‖

valid for any ε > 0 for all ~u ∈ D(B0), we deduce that

‖B1~u‖ ≤ a‖B0~u‖+K‖~u‖ (200)

for all ~u ∈ D(B0), where a and K are positive constants, with a < 1.
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Theorem 8 The unconstrained Stokes operator B = B0 + B1 in the space
X = L2(Ω,RN ) is sectorial and generates an analytic semigroup. The resolvent
of B is compact and the spectrum of B consists entirely of isolated eigenvalues
of finite multiplicity, all of which are positive. Moreover, for any α ≥ 0, given
~uin ∈ D(Bα) equation (198) has the solution

~u = e−Bt~uin ∈ C([0, T ], D(Bα)) ∩ C∞((0, T ], D(Bm))

for any T > 0 and all m > 0, and this is the unique weak solution of ∂t~u+B~u =
0, ~u(0) = ~uin in the sense of Ball [Ba].

Proof. That B is sectorial is a consequence of (200) and the self-adjointness of
B0. Indeed, by a theorem on the perturbation of sectorial operators [He, p. 19,
theorem 1.3.2], it suffices to show that for some φ0 < π/2,

a sup
λ∈S0

‖B0(λ−B0)−1‖ < 1 (201)

where S0 ⊂ C is the sector where φ0 < | arg λ| ≤ π. By expanding any element
of (complexified) X with respect to an orthonormal basis of eigenfunctions of
B0, for any λ /∈ σ(B0) we get

‖B0(λ−B0)−1‖ = sup
µ∈σ(B0)

∣∣∣∣ µ

λ− µ

∣∣∣∣ .
Fix ã ∈ (a, 1). For any µ > 0, we have |µ| ≤ |λ − µ| whenever <λ ≤ 0, and
it is straightforward to check that whenever <λ > 0 and |=λ| > ã|λ|, then
ã|µ| ≤ |λ− µ|. Then (201) follows, proving that B is sectorial.

That (λ−B)−1 is compact for λ /∈ σ(B)∪σ(B0) follows from the compactness
of (λ−B0)−1 together with the identity

(λ−B)−1 = (λ−B0)−1 + (λ−B0)−1B1(λ−B)−1.

It follows that the spectrum of B is discrete, consisting only of isolated eigen-
values of finite multiplicity [Ka, III.6.29].

Suppose now that (λ − B)~u = 0 for some non-zero ~u ∈ D(B), so λ~u =
−P∆~u − ∇∇ · ~u. Then the function w = ∇ · ~u satisfies λw = −∆w in Ω,
~n ·∇w = 0 on Γ, i.e., (λ + A)w = 0 (see (176)). So if λ /∈ σ(−A) ⊂ R+, then
∇ · ~u = 0, and since ~n · ~u = 0 on Γ we have ~u = P~u. Then

λ
〈
~u, ~u

〉
=
〈
− P∆~u, ~u

〉
=
〈
−∆~u,P~u

〉
= ‖∇~u‖2,

so λ > 0. If λ = 0, then ∇ · ~u is constant, but
∫
Ω
∇ · ~u = 0 so ∇ · ~u = 0 and

arguing as above we infer ~u = 0. Hence 0 is not an eigenvalue, and so 0 is in
the resolvent set of B.

Lastly, for any α ≥ 0, given ~uin ∈ D(Bα), the regularity results for e−Bt~uin

are standard consequences of the fact that Bα is an isomorphism between its
domain and X and commutes with e−Bt [Pa, p. 74, Theorem 6.13]. For unique-
ness, see [Ba]. �
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Remark 3. The equation B~u = ~f has an interesting interpretation in terms of a
stationary Stokes system with prescribed divergence. Given any ~f ∈ L2(Ω,RN )
there is a unique ~u ∈ H2 ∩H1

0 (Ω,RN ) such that B~u = ~f , since 0 is in the
resolvent set of B by the above theorem. We can write P ~f = ~f + ∇q where
q ∈ H1(Ω) with

∫
Ω
q = 0. Since B~u = −P∆~u−∇∇ · ~u, we have P ~f = −P∆~u,

so ∇(q + ∇ · ~u) = 0. Let pS be the Stokes pressure associated with ~u. Then
(~u, pS) form a solution to the Stokes system

−∆~u+∇pS = ~f in Ω, (202)
−∇ · ~u = q in Ω, (203)

~u = 0 on Γ. (204)

As a corollary, we can characterize the domains of positive integer powers of
B by using the regularity theory for the stationary Stokes equation (see for
example [Soh, p. 123, theorem 1.5.3] or [Te1, p. 23, proposition 2.2]).

Corollary 3 Let Ω be a bounded domain with C2m boundary Γ, where m > 1
is an integer. Then

D(Bm) = {~u | ~u ∈ H2m(Ω,RN ), ~u = B~u = . . . = Bm−1~u = 0 on Γ}.

Proof: When m = 1, the conclusion is true. Suppose it is true when m =
k − 1. When m = k, take any ~u ∈ D(Bk). By the definition of D(Bk), we
have ~u ∈ D(Bk−1) and B~u ∈ D(Bk−1). By assumption, ~f := B~u ∈ H2k−2

and Bk−1~u = Bk−2(B~u) = 0 on Γ. Since P is bounded on H2k−2 [Te1, I,
Remark 1.6] we find that q ∈ H2k−1(Ω). Now (202)-(204) hold, and we can use
the regularity theory of the stationary Stokes equation cited above to conclude
~u ∈ H2k(Ω,RN ). This finishes the proof. �

Remark 4. We note that B and B0 have the same domain and that D(B1/2
0 )

is the closure of D(B0) = H2 ∩H1
0 (Ω,RN ) in norm equivalent to

‖~u‖2X1/2 = ‖B1/2
0 ~u‖2 =

〈
−∆~u, ~u

〉
= ‖∇~u‖2,

the ordinary H1 norm. So D(B1/2
0 ) = H1

0 (Ω,RN ). It is known that if B
has bounded imaginary powers then for 0 < α < 1, D(Bα) can be obtained
by interpolation between X and D(B) = D(B0) and so D(Bα) = D(Bα

0 ).
The result that indeed B + cI has bounded imaginary powers for some c > 0
apparently follows from a recent analysis of Abels [Ab] related to the formulation
of Grubb and Solonnikov (although the final result in [Ab] is stated in terms of
the constrained Stokes operator in divergence-free spaces).

8 Non-homogeneous side conditions

Looking back at the Stokes pressure pS associated with ~u, one recognizes that the
no-slip boundary condition for ~u was essential for getting the crucial equalities
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(99)-(101) using Lemma 3. So the important question arises, if general boundary
conditions ~u = ~g on Γ are imposed, do we still have an unconstrained formulation
like (134)-(136)? Moreover, what can we say if the velocity field is not divergence
free but is specified as ∇ · ~u = h? Such issues are likely to be relevant in the
analysis of problems involving complex fluids and low Mach number flows, for
example.

In this section we develop and study an unconstrained formulation for such
non-homogeneous problems. In this new formulation, ∇·~u−h satisfies the heat
equation with no-flux boundary conditions. The main theorem of this section
establishes existence and uniqueness for strong solutions.

8.1 An unconstrained formulation

Consider the Navier-Stokes equations with non-homogeneous boundary condi-
tions and divergence constraint:

∂t~u+ ~u ·∇~u+∇p = ν∆~u+ ~f (t > 0, x ∈ Ω), (205)
∇ · ~u = h (t ≥ 0, x ∈ Ω), (206)

~u = ~g (t ≥ 0, x ∈ Γ), (207)
~u = ~uin (t = 0, x ∈ Ω). (208)

What we have done before can be viewed as replacing the divergence constraint
(206) by decomposing the pressure via the formulae in (9) and (10) in such a
way that the divergence constraint is enforced automatically. It turns out that
in the non-homogeneous case a very similar procedure works. One can simply
use the Helmholtz decomposition to identify Euler and Stokes pressure terms
exactly as before via the formulae (9) and (10), but in addition another term is
needed in the total pressure to deal with the inhomogeneities. Equation (6) is
replaced by

∂t~u+ P(~u·∇~u− ~f − ν∆~u) +∇pgh = ν∇(∇ · ~u). (209)

The equation that determines the inhomogeneous pressure pgh can be found by
dotting with ∇φ for φ ∈ H1(Ω), formally integrating by parts and plugging in
the side conditions: We require〈

∇pgh,∇φ
〉

= −
〈
∂t(~n · ~g), φ

〉
Γ

+
〈
∂th, φ

〉
+
〈
ν∇h,∇φ

〉
(210)

for all φ ∈ H1(Ω). With this definition, we see from (209) that〈
∂t~u,∇φ

〉
−
〈
∂t(~n · ~g), φ

〉
Γ

+
〈
∂th, φ

〉
=
〈
ν∇(∇ · ~u− h),∇φ

〉
(211)

for every φ ∈ H1(Ω). This will mean w := ∇ · ~u− h is a weak solution of

∂tw = ν∆w in Ω, ~n ·∇w = 0 on Γ, (212)

with initial condition w = ∇ · ~uin − h
∣∣
t=0

. So the divergence constraint will be
enforced through exponential diffusive decay as before (see (232) below).
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The total pressure in (205) now has the representation

p = pE + νpS + pgh, (213)

where the Euler pressure pE and the Stokes pressure pS are determined exactly
by (9) and (10) as before, and pgh is determined up to a constant by the forcing
functions g and h through the weak-form pressure Poisson equation (210). (See
Lemma 6 below.) Our unconstrained formulation of (205)-(208) then takes the
form

∂t~u+ ~u·∇~u+∇pE + ν∇pS +∇pgh = ν∆~u+ ~f (t > 0, x ∈ Ω), (214)
~u = ~g (t ≥ 0, x ∈ Γ), (215)

~u = ~uin (t = 0, x ∈ Ω). (216)

Although the definition of Stokes pressure does not require a no-slip velocity
field, clearly the analysis that we performed in section 2 does rely in crucial ways
on no-slip boundary conditions. So in order to analyze the new unconstrained
formulation, we will decompose the velocity field ~u in two parts. We introduce
a fixed field ũ in Ω× [0, T ] that satisfies ũ = ~g on Γ, and let

~v = ~u− ũ. (217)

Then ~v = 0 on Γ. With this ~v, similar to (9) and (10) we introduce

∇qE = (P − I)(~v ·∇~v − ~f), ∇qS = (I − P)∆~v −∇∇ · ~v. (218)

Then we can rewrite (214) as an equation for ~v:

∂t~v + ~v ·∇~v +∇qE + ν∇qS + P(ũ ·∇~v + ~v ·∇ũ) = ν∆~v + ~f − f̃ , (219)

where
f̃ := ∂tũ+ P(ũ ·∇ũ− ν∆ũ)− ν∇∇ · ũ+∇pgh. (220)

8.2 Existence, uniqueness and dissipation identity

We will first answer questions concerning the existence and regularity of ũ and
pgh, then state an existence and uniqueness result for strong solutions of the
unconstrained formulation (214)–(216). Let Ω be a bounded, connected domain
in RN (N = 2 or 3) with boundary Γ of class C3. We assume

~uin ∈ Huin := H1(Ω,RN ), (221)
~f ∈ Hf := L2(0, T ;L2(Ω,RN )), (222)

~g ∈ Hg := H3/4(0, T ;L2(Γ,RN )) ∩ L2(0, T ;H3/2(Γ,RN ))

∩ {~g
∣∣ ∂t(~n · ~g) ∈ L2(0, T ;H−1/2(Γ))}, (223)

h ∈ Hh := L2(0, T ;H1(Ω)) ∩H1(0, T ; (H1)′(Ω)). (224)
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Here (H1)′ is the space dual to H1. We also make the compatibility assumptions

~g = ~uin when t = 0, x ∈ Γ, (225)〈
∂t(~n · ~g), 1

〉
Γ

=
〈
∂th, 1

〉
Ω
. (226)

We remark that most of the literature on nonhomogeneous Navier-Stokes prob-
lems [La, Sol, Gr1, GS1, GS2] treats the constrained case with h = 0 in Ω and
imposes the condition ~n · ~g = 0 on Γ. Amann recently studied very weak so-
lutions without imposing the latter condition, but only in spaces of very low
regularity that exclude the case considered here [Am2].

We define

V := L2(0, T ;H2(Ω,RN )) ∩H1(0, T ;L2(Ω,RN )), (227)

and note we have the embeddings ([Ta1, p. 42], [Ev, p. 288], [Te1, p. 176])

V ↪→ C([0, T ],H1(Ω,RN )), Hh ↪→ C([0, T ], L2(Ω)). (228)

Notice that we have always used an arrow or tilde to denote a vector. So, without
confusion, we can use Y (Ω) to denote Y (Ω,RN ) or Y (Ω) as appropriate, and
further use X(Y (Ω)) to denote X(0, T ;Y (Ω)).

Lemma 6 Assume (221)-(226). Then, there exists some ũ ∈ V that satisfies

ũ(0) = ~uin, ũ
∣∣
Γ

= ~g, (229)

and there exists pgh ∈ L2(H1(Ω)/R) satisfying (210). Moreover,

‖ũ‖2V ≤ C
(
‖~g‖2H3/4(L2(Γ))∩H3/2(Γ)) + ‖~uin‖2H1(Ω)

)
, (230)

‖pgh‖L2(H1(Ω)/R) ≤ C
(
‖∂t(~n · ~g)‖L2(H−1/2(Γ)) + ‖h‖L2(H1)∩H1((H1)′)

)
. (231)

Proof: (i) By a trace theorem of Lions and Magenes [LM, vol II, Theorem 2.3],
the fact ~g ∈ H3/4(L2(Γ)) ∩ L2(H3/2(Γ)) together with (221) and the compati-
bility condition (225) implies the existence of ũ ∈ V satisfying (229).

(ii) One applies the Lax-Milgram lemma for a.e. t to (210) in the space of
functions in H1(Ω) with zero average. We omit the standard details. �

Theorem 9 Let Ω be a bounded, connected domain in RN (N = 2 or 3) and
assume (221)-(226). Then there exists T ∗ > 0 so that a unique strong solution
of (214)-(216) exists on [0, T ∗], with

~u ∈L2(0, T ∗;H2(Ω,RN )) ∩H1(0, T ∗;L2(Ω,RN )),

p =νpS + pE + pgh ∈ L2(0, T ∗;H1(Ω)/R),

where pE and pS are defined in (9) and (10) after introducing the ũ and pgh from
Lemma 6. Moreover, ~u ∈ C([0, T ∗],H1(Ω,RN )) and

∇ · ~u− h ∈ L2(0, T ∗;H1(Ω)) ∩H1(0, T ∗; (H1)′(Ω))
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is a smooth solution of the heat equation for t > 0 with no-flux boundary condi-
tions. The map t 7→ ‖∇·~u−h‖2 is smooth for t > 0 and we have the dissipation
identity

d

dt

1
2
‖∇ · ~u− h‖2 + ν‖∇(∇ · ~u− h)‖2 = 0. (232)

If we further assume h ∈ Hh.s := L2(0, T ;H2(Ω))∩H1(0, T ;L2(Ω)) and ∇·~uin ∈
H1(Ω), then

∇ · ~u ∈ L2(0, T ∗;H2(Ω)) ∩H1(0, T ∗;L2(Ω)).

Proof: First rewrite (214) as (219). Then we note that there are only two
differences between (219) and (134):

(i) There is an extra forcing term f̃ in (219). But by Lemma 6, all terms in
f̃ are known to be in L2(L2(Ω)) and thus they won’t be a problem.

(ii) Equation (219) has some extra linear terms:

P(ũ ·∇~v + ~v ·∇ũ). (233)

We know ũ ∈ V ↪→ C([0, T ],H1(Ω,RN )), so we can discretize these terms
explicitly by setting ũn = ũ(n∆t). Similar to (153), we get

‖P(ũ ·∇~v)‖2 ≤ ε‖∆~v‖2 +
C

ε
‖ũ‖4H1‖∇~v‖2. (234)

We estimate the other term in (233) by using Gagliardo-Nirenberg inequalities
[Fr, Thm. 10.1] and the Sobolev embeddings of H1 into L3 and L6:

‖~v‖L∞ ≤

C‖∆~v‖
1/2

L3/2‖~v‖
1/2
L3 ≤ C‖∆~v‖1/2‖∇~v‖1/2 (N = 2),

C‖∆~v‖1/2‖~v‖1/2
L6 ≤ C‖∆~v‖1/2‖∇~v‖1/2 (N = 3).

(235)

Then for N = 2 and 3 we have

‖P(~v ·∇ũ)‖2 ≤ ‖~v‖2L∞‖∇ũ‖2 ≤ ε‖∆~v‖2 +
C

ε
‖ũ‖4H1‖∇~v‖2. (236)

With these estimates, the rest of the proof of existence and uniqueness is essen-
tially the same as that of Theorem 6, and therefore we omit the details.

To prove the regularity of ∇ · ~u, we argue in a manner similar to the proof
of Theorem 6. We go from (214) to (209) by using (9) and (10). Then using
(210) we get (211) for any φ ∈ H1(Ω). With w = ∇ · ~u− h, taking φ ∈ D(A) as
in (176), we have 〈

w, φ
〉

=
〈
~n · ~g, φ

〉
Γ
−
〈
~u,∇φ

〉
−
〈
h, φ

〉
, (237)

therefore t 7→
〈
w, φ

〉
is absolutely continuous, and (211) yields (d/dt)

〈
w, φ

〉
=〈

w,Aφ
〉

for a.e. t. This means w is a weak solution in the sense of Ball [Ba],
and the rest of the proof goes as before.
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If we further assume h ∈ Hh.s and ∇·~uin ∈ H1(Ω), then w(0) ∈ H1(Ω). We
claim

H1(Ω) = D((−A)1/2). (238)

Then semigroup theory yields w ∈ C([0, T ∗], D((−A)1/2)), so since

0 =
〈
−∆w, ∂tw − ν∆w

〉
=

d

dt

1
2
‖∇w‖2 + ν‖∆w‖2 (239)

for t > 0, we deduce w ∈ L2(0, T ∗;H2(Ω)) ∩ H1(0, T ∗;L2(Ω)), and ∇ · ~u is in
the same space.

To prove (238), note X := D((−A)1/2) is the closure of D(A) from (176) in
the norm given by

‖w‖2X = ‖w‖2 + ‖(−A)1/2w‖2 =
〈
(I − ν∆)w,w

〉
=
∫

Ω

|w|2 + ν|∇w|2.

Clearly X ⊂ H1(Ω). For the other direction, let w ∈ H1(Ω) be arbitrary.
We may suppose w ∈ C∞(Ω̄) since this space is dense in H1(Ω). Now we
only need to construct a sequence of C2 functions wn → 0 in H1 norm with
~n ·∇wn = ~n ·∇w on Γ. This is easily accomplished using functions of the form
wn(x) = ξn(dist(x,Γ))~n ·∇w(x), where ξn(s) = ξ(ns)/n with ξ smooth and
satisfying ξ(0) = 0, ξ′(0) = 1 and ξ(s) = 0 for s > 1. This proves (238).

We can prove the uniqueness by the same method as in Theorem 6. �

9 Isomorphism theorems for non-homogeneous
Stokes systems

Drop the nonlinear term and consider the non-homogeneous Stokes system:

∂t~u+∇p− ν∆~u = ~f (t > 0, x ∈ Ω), (240)
∇ · ~u = h (t ≥ 0, x ∈ Ω), (241)

~u = ~g (t ≥ 0, x ∈ Γ), (242)
~u = ~uin (t = 0, x ∈ Ω). (243)

The unconstrained formulation is

∂t~u+∇p− ν∆~u = ~f (t > 0, x ∈ Ω), (244)
~u = ~g (t ≥ 0, x ∈ Γ), (245)

~u = ~uin (t = 0, x ∈ Ω), (246)

with
∇p = (I − P)~f + ν∇pS +∇pgh, (247)

where pS and pgh are defined as before via (10) and (210).
The aim of this section is to obtain an isomorphism between the space of

solutions and the space of data {~f,~g, h, ~uin}, for this unconstrained formulation
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and for the original Stokes system. In examining this question we are motivated
by the classic works of Lions and Magenes [LM] which provide a satisfactory
description of the correspondence between solutions and data for elliptic bound-
ary value problems. In the spirit of these results, a satisfactory theory of a given
system of partial differential equations should describe exactly how, in the space
of all functions involved, the manifold of solutions can be parametrized. Yet we
are not aware of any such complete treatment of the non-homogeneous Stokes
system. (See further remarks on this issue below.)

First we consider the mapping from data to solution. Thanks to the absence
of the nonlinear term, we can repeat much easier what we did in the proof
of Theorems 6 and 9 and get the global existence and uniqueness of a strong
solution of (244)-(247) under the same assumptions as Theorem 9. The data
{~f,~g, h, ~uin} lie inside the space

ΠF := Hf ×Hg ×Hh ×Huin (248)

from (221)–(224), and need to satisfy the compatibility conditions (225)–(226).
Corresponding to such data, we get a unique solution ~u of (244)-(247) in the
space

Hu := L2(0, T ;H2(Ω,RN )) ∩H1(0, T ;L2(Ω,RN ))

∩ {~u | ∂t(~n · ~u)|Γ ∈ L2(0, T ;H−1/2(Γ))}. (249)

The total pressure p lies in

Hp := L2(0, T ;H1(Ω)/R), (250)

and the pair {~u, p} satisfies (240), (242) and (243). As in Theorem 9, we can
show w = ∇ · ~u− h satisfies a heat equation with no-flux boundary conditions.
Equation (241) says that w = 0, and this will hold if and only if w(0) = 0, i.e.,
the following additional compatibility condition holds:

∇ · ~uin = h(0). (251)

For the non-homogeneous Stokes system (240)–(243), then, we define the data
and solution spaces by

ΠF.c :=
{
{~f,~g, h, ~uin} ∈ ΠF : (225), (226) and (251) hold

}
, (252)

ΠU := Hu ×Hp. (253)

From what we have said so far, we get a map ΠF.c → ΠU by solving the
unconstrained system (244)–(247). Due to the absence of nonlinear terms, the
estimates in the proof ensure that this map is bounded. In the other direction,
given {~u, p} ∈ ΠU , we simply define {~f,~g, h, ~uin} using (240)–(243) and check
that this lies in ΠF.c.
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Note that in Theorem 9, one has more regularity on ∇ · ~u if one assumes
more on ∇ · ~uin and h. Correspondingly, like Hh.s defined in Theorem 9, we
introduce spaces of stronger regularity by

Huin.s := H1(Ω,RN ) ∩ {~uin

∣∣ ∇ · ~uin ∈ H1(Ω)}, (254)
ΠF.s := Hf ×Hg ×Hh.s ×Huin.s. (255)

The solution ~u then lies in

Hu.s := L2(0, T ;H2(Ω,RN )) ∩H1(0, T ;L2(Ω,RN ))

∩ {~u
∣∣ ∇ · ~u ∈ L2(0, T ;H2(Ω)) ∩H1(0, T ;L2(Ω))}. (256)

(Note, if ~u ∈ Hu.s then ∂t~u ∈ L2(H(div; Ω)) so ~n · ∂t~u ∈ L2(H−1/2(Γ)).) So
as an alternative to the spaces in (252)–(253), we also obtain an isomorphism
between the data and solution spaces with stronger regularity defined by

ΠF.c.s :=
{
{~f,~g, h, ~uin} ∈ ΠF.s : (225), (226) and (251) hold

}
, (257)

ΠU.s := Hu.s ×Hp. (258)

Summarizing, we have proved the following isomorphism theorem for the
non-homogeneous Stokes system (240)–(243).

Theorem 10 Let Ω be a bounded, connected domain in RN with N any positive
integer ≥ 2, and let T > 0. The map {~f,~g, h, ~uin} 7→ {~u, p}, given by solving the
unconstrained system (244)–(247), defines an isomorphism from ΠF.c onto ΠU .
The same solution procedure defines an isomorphism from ΠF.c.s onto ΠU.s.

Remark 5. For the standard Stokes system with zero-divergence constraints
∇ · ~uin = 0 and h = 0, existence and uniqueness results together with the
estimates

sup
0≤t≤T

‖~u(t)‖H1 + ‖~u‖L2(0,T ;H2) + ‖p‖L2(0,T ;H1/R)

≤ C
(
‖~f‖L2(0,T ;L2) + ‖~uin‖H1 + ‖~g‖H3/4(L2(Γ)) + ‖~g‖L2(H3/2(Γ))

)
(259)

were obtained in the classic work of Solonnikov [Sol, Theorem 15], where more
general Lp estimates were also proved. (Also see [GS1, GS2].) However, instead
of the necessary compatibility condition∫

Γ

~n · ~g = 0, (260)

Solonnikov made the stronger constraining assumption that both the data ~g and
solution ~u have zero normal component on Γ, and correspondingly his estimates
do not contain a term ‖∂t(~n · ~g)‖L2(H−1/2(Γ)) on the right hand side of (259).
(Note that when ∇ · ~uin = 0 and h = 0, we have

∫
Γ
~n · ~g|t=0 =

∫
Ω
∇ · ~uin = 0 by

(225), whence (260) is equivalent to (226).)
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Remark 6. For the unconstrained Stokes system (244)-(246) there is an extra
subtlety in determining an isomorphism from data to solution. We obtain a
unique solution pair {~u, p} ∈ ΠU given any data {~f,~g, h, ~uin} ∈ ΠF that satisfy
only the compatibility conditions (225) and (226) without (251). Consequently
the map from data to {~u, p} is not one-to-one. And, in the other direction, given
{~u, p}, we can recover

~f = ∂t~u+∇p− ν∆~u, ~g = ~u
∣∣
Γ
, ~uin = ~u|t=0. (261)

But how are we to recover h? We need to use the fact, that follows from the
definition of pgh in (210), that ∇ · ~u − h satisfies a heat equation with no-flux
boundary conditions. In fact, to be able to recover h we need to know one more
item, hin, the initial value of h. We have

h = ∇ · ~u− w (262)

where w is the solution of

∂tw = ν∆w in Ω, ~n · ∇w = 0 on Γ, w(0) = ∇ · ~u|t=0 − hin. (263)

This procedure indicates that we should count the triple {~u, p, hin} as our solu-
tion in order to build an isomorphism with the data. Of course, the regularity
of hin must match that of h, recalling the embeddings in (228).

Consequently, we see that solving the unconstrained system (244)–(247) de-
fines an isomorphism between the data spaces

Π̃F.c :=
{
{~f,~g, h, ~uin} ∈ ΠF : (225) and (226) hold

}
, (264)

Π̃F.c.s :=
{
{~f,~g, h, ~uin} ∈ ΠF.s : (225) and (226) hold

}
, (265)

and, respectively, the solution spaces for {~u, p, hin} given by

ΠU.w = Hu ×Hp ×Hhin, Hhin = L2(Ω), (266)

ΠU.s = Hu.s ×Hp ×Hhin.s, Hhin.s = H1(Ω). (267)
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