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Inferring the astrophysical parameters of coalescing compact binaries is a key science goal of
the upcoming advanced LIGO-Virgo gravitational-wave detector network and, more generally,
gravitational-wave astronomy. However, current parameter estimation approaches for such scenarios
can lead to computationally intractable problems in practice. Therefore there is a pressing need for
new, fast and accurate Bayesian inference techniques. In this letter we demonstrate that a reduced
order modeling approach enables rapid parameter estimation studies. By implementing a reduced
order quadrature scheme within the LIGO Algorithm Library, we show that Bayesian inference on
the 9-dimensional parameter space of non-spinning binary neutron star inspirals can be sped up by
a factor of 30 for the early advanced detectors’ configurations. This speed-up will increase to about
150 as the detectors improve their low-frequency limit to 10Hz, reducing to hours analyses which
would otherwise take months to complete. Although these results focus on gravitational detectors,
the techniques are broadly applicable to any experiment where fast Bayesian analysis is desirable.

Introduction– Advanced LIGO (aLIGO) [1] and ad-
vanced Virgo (AdV) [2] are expected to yield the first
direct detections of gravitational waves (GWs) from as-
trophysical sources in the next few years. Compact bi-
nary coalescences (CBCs) are the most promising GW
sources, with expected detection rates between a few
and tens per year [3]. Effective parameter estimation
for CBCs has been demonstrated [4–6], but approaches
to date carry high, often unrealistic computational costs
for the cases of interest, even when using efficient algo-
rithms such as Markov chain Monte Carlo (MCMC) or
nested sampling [7]. For the advanced detectors, which
will start taking data within a year or two, current ap-
proaches will lead to months or years of computational
wall (clock) time for the analysis of each detected signal.
Given the expected detection rates, there is a clear need
for new approaches which can estimate the astrophysical
GW source parameters in feasible timescales.

In parameter estimation studies, the posterior proba-

bility density function (PDF) of a set of parameters, ~θ,

is computed from a GW model, h(~θ), assumed to de-
scribe the detector’s signal d. The PDF is related to

the likelihood function, L(d|~θ), and the prior probability

on the model parameters, P(~θ), via the Bayes’ theorem:

p(~θ|d) ∝ P(~θ) L(d|~θ).

Assuming that the detector data d contains the true

source’s signal h(~θtrue) and stationary Gaussian noise n,
the likelihood function is given by

logL(d|~θ) = (d|h(~θ))− 1

2

[
(h(~θ)|h(~θ)) + (d|d)

]
, (1)

where d = ht(~θt) + n and (a|b) is a weighted inner prod-

uct for discretely sampled noisy data

(d|h(~θ)) = 4< ∆f

L∑
k=1

d̃∗(fk)h̃(~θ; fk)

Sn(fk)
. (2)

In this equation d̃(fk) and h̃(~θ; fk) are the discrete
Fourier transforms at frequencies {fk}Lk=1, ∗ denotes
complex conjugation, and the power spectral density
(PSD) Sn(fk) characterizes the detector’s noise.

For a given observation time T = 1/∆f and detection
frequency window (fhigh − flow) there are

L = int
([
fhigh − flow

]
T
)

(3)

sampling points in the sum (2). When L is large, as in
the cases of interest for this paper, there are two major
bottlenecks: (i) evaluation of the model at each fk and,
(ii) assembly of the likelihood (1).

In general, smoothly parameterized models are
amenable to dimensional reduction which, in turn, pro-
vides computationally efficient representations. The spe-
cific application of dimensional reduction we consider in
this paper tackles the two aforementioned bottlenecks by
permitting the inner product (2) to be computed with
significantly fewer terms. In summary: if a reduced set
of N < L basis can be found which accurately spans
the model space, it is possible to replace the inner prod-
uct (2) with a reduced order quadrature (ROQ) rule (5)
containing only N terms, reducing the overall parameter
estimation analysis cost by a factor of L/N , provided the
waveforms can be directly evaluated. For other models,
in particular those described by partial or ordinary differ-
ential equations, direct evaluation may be accomplished
using surrogates [9, 10].

In this paper we demonstrate an ROQ accelerated
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GW parameter estimation study. While the approach
is applicable to any GW model, here we focus on bi-
nary neutron star (BNS) inspirals, as these are expected
to have the highest detection rates with the lowest un-
certainty [3]. We show, both through operation counts
and an implementation in the LIGO Algorithm Library
(LAL) pipeline [11], that ROQs provide a factor of ∼ 30
speedup for the early advanced detector’s configuration
[12]. This speedup will raise to ∼ 150 when the sensi-
tivity band is lowered to a target of 10Hz, allowing for
param in realistic timescales.

Compressed likelihood evaluations– Compared to pre-
vious work on which this paper is based [13, 14], param-
eter estimation of gravitational waves from binary neu-
tron stars carries a number of challenges unique to large
datasets which contain long gravitational waveforms with
many in-band wave cycles. We briefly summarize the
construction of ROQs while focusing on technical but es-
sential solutions to these challenges.

Reduced order quadratures can be used for fast
parameter estimation whenever the waveform model
is amenable to dimensional reduction, through three
steps. The first two are carried out offline, while the
third and last one is startup – i.e., performed at the
beginning of the parameter estimation analysis – and
data-dependent. (1) Construct a reduced basis, i.e. a
set of N basis whose span approximates the GW model
within a specified precision. (2) Construct an empirical
interpolant by requiring it to exactly match any template
at N carefully chosen frequency subsamples {Fk}Nk=1
[15–17]. (3) The empirical interpolant is used to replace,
without loss of accuracy, inner product evaluations (2)
by ROQ compressed ones (5).

Step 1. The reduced bases only needs to be built over
the space of intrinsic parameters for the waveform fam-
ily. Therefore, the representation of the waveform family
can be used with any PSD in the noise-weighted inner
product (2).

Basis generation in this paper proceeds in two stages.
A greedy algorithm first identifies a preliminary basis
suitable for any value of ∆f [19]. Next, this preliminary
basis is evaluated at L equally spaced frequency samples
appropriate for the detector. These “resampled basis”
are neither orthogonal nor linearly independent, and
so a second similar dimensional reduction is necessary.
Through these steps appropriately conditioned numeri-
cal algorithms [20] are used to avoid poor conditioning
that for large values of L otherwise lead to bases with
no accuracy whatsoever.

Step 2. Given an N -size basis it is possible to uniquely
and accurately reconstruct any waveform from only

N evaluations {h̃(~θ;Fk)}Nk=1. The special frequencies
{Fk}Nk=1, selected from the full set {fi}Li=1, can be found
from Algorithm 5 of Ref. [13] without modification. This
step provides a near-optimal compression strategy in fre-
quency which is complimentary to the parameter one of

Step (1). The model’s empirical interpolant, valid for all
parameters, can be written as (cf. Eq. (19) of Ref. [9])

h̃(~θ; fi) ≈ e−2πitcfi

N∑
j=1

Bj(fi)h̃(~θ, tc = 0;Fj) , (4)

a sum over the basis set {Bj}Nj=1 and where, for the sake
of the discussion below, we have temporarily isolated
the coalescence time tc from the other parameters.

Step 3. All extrinsic parameters, except the coalescence
time tc, do not affect the frequency evolution of the bi-
nary and simply scale the inner product (2), thereby
sharing the same ROQs. The coalescence time, how-
ever, requires special treatment. Substituting Eq. (4)
into Eq. (2),

(d|h(~θ, tc)) =

N∑
k=1

ωk(tc)h̃(~θ, tc = 0;Fk) , (5)

with the ROQ weights given by

ωk(tc) = 4< ∆f

L∑
i=1

d̃∗(fi)Bk(fi)

Sn(fi)
e−2πitcfi . (6)

Our approach for the dependence of (6) on tc is through
domain decomposition: an estimate for the time window
W centered around the coalescence time ttrigger is given
by the GW search pipeline. This suggests a prior interval
[ttrigger −W, ttrigger + W ] be used for tc. The prior in-
terval is then split into nc equal subintervals of size ∆tc.
The number of subintervals is chosen so that the dis-
cretization error is below the measurement uncertainty
on the coalescence time. Finally, on each subinterval a
unique set of ROQ weights is constructed.

Since Step (3) is currently implemented in the LAL
pipeline, we summarize it in Algorithm (1). Offline steps
(1) and (2) are independently generated. Our approach
guarantees, though, that those steps need be to carried
out only once for each waveform model.

Compressed norm evaluations. To quickly compute
the likelihood we also need an inexpensive rule for

(h(~θ)|h(~θ)), whose evaluation no longer depends on the
data stream or coalescence time. Consequently, such ex-
pressions are typically simple. For example, the norm
of the restricted TaylorF2 gravitational waveform model
considered below is exactly computable [21].

Overall likelihood-compression. By design, weight gener-
ation is computed in the startup stage for each detection-
triggered data set, requiringN full inner product (2) eval-
uations. This cost is negligible, while each likelihood is
subsequently calculated millions of times, leading to sig-
nificant speedups in parameter estimation studies. The
latter scales as the fractional reduction L/N of the num-
ber of terms in the quadrature rules (2) and (5).
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Algorithm 1 Computing the ROQ integration weights

1: Input: d, Sn, {Bj}Nj=1,∆f, ttrigger,W,∆tc.

2: Set nc = int ((2W ) /∆tc) + 1
3: for j = 1→ nc do
4: Tj = ttrigger −W + (j − 1) ∆tc
5: for k = 1→ N do
6: Compute ωk(Tj) via Eq. (6)
7: end for
8: end for

9: Output: {Tj}nc
j=1, {{ωk(Tj)}Nk=1}

nc
j=1.

Parameter estimation acceleration for binary neutron
star signals – The majority of a binary neutron star’s
GW signal will be in the inspiral regime [22], which
can be described by the closed-form TaylorF2 approxi-
mation [23]. While TaylorF2 does not incorporate spins
or the merger-ringdown phases of the binary’s evolution,
these should not be important for BNS parameter estima-
tion (see [24]) and can therefore be neglected. Even for
this simple to evaluate family of waveforms, inference on
a single data set requires significant computational wall-
time with standard parameter estimation methods [6].
We now report on the anticipated speedup L/N achieved
by ROQ compressed likelihood evaluations. First, we
compute the observation time T required to contain a
typical BNS signal. Next, we find the number of reduced
basis N needed to represent this model for any pair of
BNS masses. In our studies we fix fhigh to 1024Hz while
flow varies between 10Hz and 40Hz.

The time taken for a BNS system with an initial GW
frequency of flow to inspiral to 1024Hz,

TBNS =
[
6.32 + 2.07× 106/(f3low + 5.86f2low)

]
s , (7)

is empirically found by generating a (1 + 1) M� wave-
form (directly given in the frequency domain) and Fourier
transforming to the time domain. Equation (7) and sub-
sequent fits were found using a genetic algorithm-based
symbolic regression software, Eureqa [25, 26]. The length
L, as implied by Eq. (3), is plotted in the top panel of
Fig. 1.

As discussed, each basis only needs to be constructed
over the space of intrinsic parameters — in this case the
two-dimensional space of component masses in the range
[1, 4]M�. This range is wider than expected for neutron
stars, but ensures that the resulting PDFs do not have
sharp cut-offs [27]. The number of reduced basis required
to represent the TaylorF2 model within this range with
a representation error around double precision (∼ 10−14)
can be fit by

NBNS = 3.12× 105f−1.543
low , (8)

and is depicted in the middle panel of Fig. 1.We have
found that increasing the high-frequency cutoff to 4096Hz

only adds a handful of basis elements, while L changes
by a factor of 4, thus indicating that the speedup for an
inspiral-merger-ringdown model might be higher, espe-
cially given that not many empirical interpolation nodes
seem to be needed for the merger and ringdown regimes
[9].
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FIG. 1. Top: Length L (red dots) of a typical binary neu-
tron star inspiral waveform, with the solid black curve con-
necting this data implied by the fit (7). Middle: Number
of reduced basis waveforms (red crosses), with the solid black
curve given by the fit (8). Bottom: Speedup implied by
operation counts, as given by equation (9).

Recalling equation (3), the speedup from standard to
ROQ-compressed likelihood evaluations is given by

L

N
= (1024− flow)

TBNS
NBNS

. (9)

where TBNS sand NBNS are given by Eqs. (7) and (8). This
speedup is shown in Fig. 1 (bottom), with a reduction
in computational cost and time of ∼ 30 for the initial
detectors (with a cutoff of flow = 40 Hz) and ∼ 150 once
the advanced detectors reach flow ∼ 10 Hz.
Implementation and numerical studies– We have im-

plemented compressed likelihood evaluations and Algo-
rithm (1) in the LAL parameter estimation pipeline,
known as LALInference [11, 18], naming the resulting
variation LALInference ROQ.

Next we describe comparisons between MCMC pa-
rameter estimation studies using the standard version of
LALInference and LALInference ROQ, for binary neu-
tron stars with TaylorF2 as waveform model. We inject
synthetic signals embedded in simulated Gaussian noise
into the LAL pipeline, for settings anticipating the initial
configuration of aLIGO, which should be online within
the next two years with sensitivities of flow = 40Hz, us-
ing the zero detuned high power PSD [28].

A typical time window for the coalescence time tc of
a binary neutron star signal, centered around the trigger
time, is W = 0.1s [6, 29]. Following the procedure dis-



4

Mc (M�) η m1 (M�) m2 (M�) SNR

injection 1.2188 0.25 1.4 1.4 11.4

standard 1.21881.21891.2184 0.2490.2500.243 1.521.661.41 1.301.391.18 12.9

ROQ 1.21881.21891.2184 0.2490.2500.243 1.521.661.41 1.301.391.19 12.9

TABLE I. Intrinsic parameters (chirp mass Mc, symmetric
mass ratio η, masses m1 and m2) and Signal-to-Noise Ra-
tio (SNR) of the analysis from Figure 2. The first line give
the injected values. The last two lines give median value
and 90% credible intervals, for the same parameters with the
standard likelihood (second line) and the compressed likeli-
hood using ROQs (third line). The SNR was then computed
with Likelihoodmax ≈ SNR2/2. The differences between the
two methods are dominated by statistics from computing in-
tervals with a finite number of samples. In our analysis, the
masses are subject to the constraint m1 < m2, leading to
the true values (where m1 = m2) being at the edge of the
confidence interval.

cussed above, LALInference ROQ discretizes this prior
into nc = 2, 000 sub-intervals, each of size ∆tc = 10−5s,
for which it constructs a unique set of ROQ weights. This
width of 10−5s ensures that this discretization error is
below the measurement uncertainty on the coalescence
time, which is typically ∼ 10−3s [18].

We found that, as expected, the ROQ and standard
likelihood approaches, through their LAL implementa-
tions, produce statistically indistinguishable results for
posterior probability density functions over the full 9-
dimensional parameter space. As examples, results for
the two intrinsic mass parameters for the injection pa-
rameters in Table I are shown in Figure 2.

It is also useful to quantify the fractional difference in
the 9D likelihood function computed using ROQs and
the standard approach. We have observed this fractional
error to be

∆ log L = 1−
(

log L
log LROQ

)
. 10−6

in all cases. That is, both approaches are indistinguish-
able for all practical purposes.

However, the compressed likelihood using ROQs is sig-
nificantly faster: the ROQ-based MCMC study with the
discussed settings takes ∼ 1 hour, compared to ∼ 30
hours using the standard likelihood approach, in remark-
able agreement with the expected savings based on op-
eration counts. The wall-time of the analysis is propor-
tional to the total number of posterior samples of the
MCMC, which in this case was ∼ 107. The startup stage
of building the ROQ has negligible cost and is done in
near real-time: ∼ 30s, which is equivalent to ∼ 0.028%
of the total cost of a standard likelihood parameter esti-
mation study.

Once the advanced detectors have achieved their target
sensitivity, with flow ∼ 10Hz, the longest BNS signals will
last around 2048s in duration. Assuming a fiducial high
frequency cut-off of 1024 Hz, which is approaching the
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FIG. 2. Probability density function for the chirp mass
Mc and symmetric mass ratio η of a simulated event in
LIGO/Virgo data. In green as obtained in ∼ 30 hours by the
standard likelihood, and in blue as obtained in 1 hour with
the ROQ. The injection values are in red, and are listed in
Table I. The overlap region of the sets of PDFs is the hatched
region.

upper limit of where aLIGO/AdV will be sensitive, we es-
timate datasets as large as L ∼ 1024Hz−1×2048s ∼ 106.
Assuming that the advanced detectors will require at
least ∼ 107, this implies runtimes upwards of ∼ 100 days
and one Petabyte worth of model evaluations using the
standard approach. The results of this paper indicate
that an ROQ approach will reduce this to less than a day.
With parallelization of the sum in each likelihood eval-
uation run-times could be significantly reduced further
to essentially real time. Remarkably, even without par-
allelization, this approach when applied to the advanced
detectors having reached design sensitivity will be faster
than even the standard likelihood one used for the initial
detectors.
Outlook– Around three weeks of real (wall) time, for

flow = 40Hz are needed to perform a precessing-spin pa-
rameter estimation study on a single data stream with
standard likelihood evaluations [18]. With a cutoff of
flow = 10Hz, these analyses could take months to years,
so techniques for accelerated inference on these models,
such as the one presented in this paper, are essential
for realistic gravitational-wave astronomy and extract-
ing the full science potential of the upcoming advanced
gravitational-wave detectors.

In this paper we have addressed the issue of fast likeli-
hood evaluation for non-spinning binary neutron star in-
spirals. Results of previous work indicate that significant
computational savings are to be expected for other wave-
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form models. For example, in Ref. [19] it was found that
the number of reduced basis waveforms barely changes
as spins are included – at least in the non-precessing case
– and, by construction, neither does the number of ROQ
evaluations. While waveform evaluation is the dominant
cost for models which incorporate precession, recent re-
sults [30] have shown that ultra-compact bases can also
be constructed for fully precessing systems. This might
provide a means for constructing fast to evaluate mod-
els of precessing binary inspirals using surrogates mod-
els [9, 10].
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