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Abstract. The equations of polyconvex elastodynamics can be embed-
ded to an augmented symmetric hyperbolic system. This property pro-
vides a stability framework between solutions of the viscosity approxima-
tion of polyconvex elastodynamics and smooth solutions of polyconvex
elastodynamics. We devise here a model of stress relaxation motivated
by the format of the enlargement process which formally approximates
the equations of polyconvex elastodynamics. The model is endowed
with an entropy function which is not convex but rather of polyconvex
type. Using the relative entropy we prove a stability estimate and con-
vergence of the stress relaxation model to polyconvex elastodynamics in
the smooth regime.

1. Introduction

The mechanical motion of a continuous medium with nonlinear elastic

response is described by the system of partial differential equations

∂2y

∂t2
= ∇ · T (∇y) (1.1)

where y : R
3 × R

+ → R
3 describes the motion and T is the Piola–Kirchhoff

stress tensor. The system (1.1) may be recast as a system of conservation

laws, for the velocity v = ∂ty and the deformation gradient F = ∇y, in the

form
∂tFiα = ∂αvi

∂tvi = ∂αTiα(F ) ,
(1.2)

i, α = 1, . . . , 3. The equivalence holds for solutions (v, F ) with F = ∇y, i.e.

subject to the set of differential constraints

∂βFiα − ∂αFiβ = 0 . (1.3)

Equation (1.3) is an involution: if it holds initially it is propagated by (1.2)1

to hold for all times.
1



2 ATHANASIOS E. TZAVARAS

Motivated by the requirements imposed on the theory of thermoelasticity

from consistency with the Clausius-Duhem inequality of thermodynamics,

one often imposes the assumption of hyperelasticity, i.e. that T is expressed

as the gradient of a stored energy function W : Mat3×3 → [0,∞)

T (F ) =
∂W

∂F
(F ) . (s)

The principle of material frame indifference dictates that W remains invari-

ant under rotations

W (OF ) = W (F ) for all orthogonal matrices O ∈ O(3).

Convexity of the stored energy W is too restrictive and even incompatible

with certain physical requirements. It conflicts with frame indifference in

conjunction with the requirement that the energy increase without bound

as detF → 0+. In addition, convexity of the energy together with the ax-

iom of frame indifference impose restrictions on the induced Cauchy stresses

that rule out certain naturally occurring states of stress (e.g. [5, Sec 8], [3,

Sec 4.8]). As a result, it has been replaced in the theory of elastostatics by

various weaker notions such as quasi-convexity, rank-1 convexity or poly-

convexity, see [1] or [2] for a recent survey. Here, we adopt the assumption

of polyconvexity which postulates that

W (F ) = g(F, cof F,detF ) ,

where g is a strictly convex function of Φ(F ) = (F, cof F,detF ), and encom-

passes various interesting models (e.g. [3]).

Convexity of the entropy is known to provide a stabilizing mechanism for

thermomechanical processes, and entropy inequalities for convex entropies

have been employed in the theory of hyperbolic conservation laws as an ad-

missibility criterion for weak solutions [14] and provide stability frameworks

for classical solutions [6], [11]. On the other hand, for many physical systems

convexity is an unnatural assumption and the question arises to understand

the mechanisms that provide stability in such contexts. In the elastodynam-

ics model, for instance, the lack of convexity in the stored energy makes the

mechanical energy E = 1
2v2 + W (F ) non-convex, and induces an array of

questions regarding the stability the model and its various approximating
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theories. Our objective is to contribute to a program [15, 10, 13] of under-

standing such issues and suggest remedies especially as it pertains with the

stable approximation of elastodynamics by stress relaxation theories.

It is instructive to compare the properties of the elastodynamics system

for the cases of a convex and a polyconvex stored energy. For convex stored

energies, the theory of relative entropy [6] yields stability of smooth solutions

of (1.2) within the approximating theory of viscoelasticity of the rate type

∂tFiα = ∂αvi

∂tvi = ∂αTiα(F ) + ε∂α∂αvi

(1.4)

Convexity of the entropy has a stabilizing effect for general relaxation ap-

proximations [4], [18], and a relative entropy computation [13] shows that

convex elastodynamics is stable within the theory of stress relaxation

∂tFiα = ∂αvi

∂tvi = ∂αSiα

∂t(Siα − fiα(F )) = −
1

ε
(Siα − Tiα(F )).

(1.5)

The latter model may be visualized within the framework of viscoelasticity

with memory

S = f(F ) +

∫ t

−∞

1

ε
e−

1
ε
(t−τ)h(F (·, τ)) dτ

with the equilibrium stress T (F ) decomposed into an elastic and viscoelastic

contribution, T (F ) = f(F ) + h(F ), f = ∂WI

∂F
and T = ∂W

∂F
, and a kernel

exhibiting a single relaxation time 1
ε
. The approximation (1.5) is consistent

with the second law of thermodynamics, provided the potential of the in-

stantaneous elastic response WI dominates the potential of the equilibrium

response W .

As convexity is largely incompatible with material frame indifference, the

effect of adopting weaker notions of convexity on the stability of thermo-

mechanical processes needs to be understood. The elastodynamics system

has been a test ground to study such issues. An analog of the Lax-entropy

admissibility that exploits the structure of involutions and is applicable to

rank-1 convex energies has been proposed in [7]. Insight was recently ob-

tained on the structure of polyconvex elastodynamics [10], where, due to
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kinematic constraints on the null-Lagrangians [15], (1.2) can be embedded

into the symmetric hyperbolic system

∂tvi = ∂α

(
∂g

∂ΞA
(Ξ)

∂ΦA

∂Fiα
(F )

)

∂tΞ
A = ∂α

(
∂ΦA

∂Fiα
(F )vi

) (1.6)

and be visualized as constrained evolution thereof. The augmented system

admits the convex entropy η = 1
2 |v|

2 + g(Ξ) and is symmetrizable. A rel-

ative entropy calculation shows stability of smooth solutions [9], while an

analogous embedding of the viscoelasticity system (1.4) yields stability of

polyconvex elastodynamics within viscoelasticity of the rate type [13].

Convexity of the entropy is a dictum of stability for relaxation approxi-

mations; at the same time it is not a consequence of thermodynamical con-

sistency of relaxation theories with the Clausius-Duhem inequality [16, 13].

A natural question then arises whether relaxation theories that forego con-

vexity can approximate in a stable way limit theories of polyconvex elasto-

dynamics. This question is pursued here for the paradigm

∂tvi − ∂α

(
TA ∂ΦA

∂Fiα

)
= 0

∂tFiα − ∂αvi = 0

∂t

(
TA −

∂σI

∂ΞA
(Φ(F ))

)
= −

1

ε

(
TA −

∂σE

∂ΞA
(Φ(F ))

)

∂βFiα − ∂αFiβ = 0 .

(1.7)

The format of this stress-relaxation model is motivated by the embedding

of (1.2) to (1.6), and system (1.7) formally approximates as ε → 0 the

equations of polyconvex elastodynamics. The system (1.7) has the property

that it can be embedded to an augmented relaxation system (see (3.6)) and

the latter is endowed with an entropy inequality for a convex entropy. The

reduced entropy inherited by (1.7) is of the form

E =
1

2
|v|2 + Ψ(Φ(F ), τ)
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with Ψ is a convex function and Φ(F ) = (F, cof F,det F ), and E is not convex

but rather of polyconvex type. We prove using a relative entropy computa-

tion and the null-Lagrangian structure that this theory approximates in a

stable way smooth solutions of (1.2) with polyconvex stored energy.

The article is organized as follows. In Section 2 we present the embed-

ding of (1.2) into the augmented system (1.6), define the relative entropy for

the augmented system and outline how it is used in [13] to obtain stability

and convergence of smooth solutions of (1.4) to smooth solutions of (1.2).

In section 3 we define the augmented relaxation system (3.6), show that

the augmented system is endowed with a convex entropy, and exhibit the

inherited relative entropy calculation (3.24) for the system (1.7). This cul-

minates into the stability and convergence Theorem 4.1 between solutions of

the relaxation model (1.7) and the polyconvex elastodynamics system (1.2).

2. Polyconvex elastodynamics

The system of elastodynamics (1.1) can be expressed in the form of a

system of conservation laws

∂tFiα = ∂αvi

∂tvi = ∂αTiα(F ) .
(2.1)

where v = yt and F = ∇y. The equivalence of the two formulations holds for

functions F that are gradients. Note that F = ∇y if and only if it satisfies

∂βFiα − ∂αFiβ = 0 (2.2)

and, technically, the system (1.1) is equivalent to both (2.1) and (2.2). The

latter relation may be viewed as a constraint in the initial data that is

propagated by solutions of (2.1)1.

2.1. The symmetrizable extension of polyconvex elastodynamics.

We consider a theory of polyconvex hyperelasticity, that is the Piola-Kirchoff

stress is derived from a potential T (F ) = ∂W (F )
∂F

where the stored energy

W : Mat3×3 → [0,∞) factorizes as a convex function of the minors of F :

W (F ) =
(
g ◦ Φ

)
(F ) , where Φ(F ) = (F, cof F,detF ) (2.3)
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and g : Mat3×3×Mat3×3×R → R is convex. The cofactor matrix cof F and

the determinant detF are

(cof F )iα =
1

2
ǫijkǫαβγFjβFkγ ,

det F =
1

6
ǫijkǫαβγFiαFjβFkγ =

1

3
(cof F )iαFiα .

We review a symmetrizable extension of polyconvex elastodynamics [10],

based on certain kinematic identities on detF and cof F from [15]. The

components of Φ(F ) are null Lagrangians and satisfy the identities

∂

∂xα

(
∂ΦA

∂Fiα
(∇y)

)
≡ 0

for any smooth map y(x, t). Equivalently, this is expressed as

∂α

(
∂ΦA

∂Fiα
(F )

)
= 0 , ∀F with ∂βFiα − ∂αFiβ = 0 . (2.4)

The kinematic compatibility equation (2.1)1 implies

∂tΦ
A(F ) − ∂α

(
∂ΦA

∂Fiα
(F )vi

)
= 0 . (2.5)

Strictly speaking (2.5) do not form what is called in the theory of conser-

vation laws entropy - entropy flux pairs, as they hold only for F that are

gradients, i.e. ∀F with ∂βFiα − ∂αFiβ = 0.

This motivates to embed (2.1) into the system of conservation laws

∂tvi = ∂α

(
∂g

∂ΞA
(Ξ)

∂ΦA

∂Fiα
(F )

)

∂tΞ
A = ∂α

(
∂ΦA

∂Fiα
(F )vi

)
.

(2.6)

Note that Ξ = (F,Z,w) takes values in Mat3×3 × Mat3×3 × R ≃ R
19 and

is treated as a new dependent variable. The extension has the following

properties:

(i) If F (·, 0) is a gradient then F (·, t) remains a gradient ∀t.

(ii) If Ξ(·, 0) = Φ(F (·, 0)) with F (·, 0) = ∇y0, then Ξ(·, t) = Φ(F (·, t))

where F (·, t) = ∇y(·, t). In other words, the system of elastodynam-

ics can be visualized as constrained evolution of (2.6).

(iii) The enlarged system admits a strictly convex entropy

η(v,Ξ) =
1

2
|v|2 + g(Ξ)
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and is thus symmetrizable (along solutions that are gradients).

Property (iii) is again based on the null-Lagrangian structure and η is not

an entropy in the usual sense of the theory of conservation laws. Rather,

the identity

∂t

[
1

2
|v|2 + g(Ξ)

]
− ∂α




∑

i,A

vi
∂g(Ξ)

∂ΞA

∂ΦA(F )

∂Fiα



 = 0

is again based on (2.4).

2.2. Relative energy for viscosity approximations. Let ŷ be a smooth

solution of (1.1) and yε a solution of the viscosity approximation (1.4). Then

(v̂, F̂ ) satisfy (2.1) and (vε, F ε) the viscous approximation

∂tFiα = ∂αvi

∂tvi = ∂αTiα(F ) + ε∂α∂αvi

(2.7)

We outline a strategy [13, 9] for comparing the two systems. As already

noted the function (v̂, Ξ̂) with Ξ̂ = Φ(F̂ ) ∈ R
D, D = 19 for d = 3 while D =

5 for d = 2, solves the enlarged elastodynamics system (2.6). Similarly, the

function (v,Ξ) with Ξ = Φ(F ) solves the extended viscosity approximation




∂tΞ

A = ∂α

(
∂ΦA(F )

∂Fiα
vi

)

∂tvi = ∂α

(
∂g(Ξ)
∂ΞA

∂ΦA(F )
∂Fiα

)
+ ε∂α∂αvi .

(2.8)

Smooth solutions of (2.6) and (2.8) can be compared using a relative

energy identity. Define the relative energy

ηr(v,Ξ | v̂, Ξ̂) :=
1

2
|v − v̂|2 + g(Ξ) − g(Ξ̂) −

∂g(Ξ̂)

∂ΞA
(ΞA − Ξ̂A)

and the associated (relative) flux

qα
r (v,Ξ | v̂, Ξ̂) :=

(
∂g(Ξ)

∂ΞA
−

∂g(Ξ̂)

∂ΞA

)
(vi − v̂i)

∂ΦA(F )

∂Fiα
,

α = 1, 2, 3. Using (2.4), it follows that

∂tηr −∇ · qr + ε|∇(v − v̂)|2

= Q +
ε

2
△|v − v̂|2 + ε(v − v̂) · △v̂ ,

(2.9)
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where Q is a quadratic error term of the form

Q :=
∂2g(Ξ̂)

∂ΞA∂ΞB
∂αΞ̂B

(
∂ΦA(F )

∂Fiα
−

∂ΦA(F̂ )

∂Fiα

)

(vi − v̂i)

+ ∂αv̂i

(
∂g(Ξ)

∂ΞA
−

∂g(Ξ̂)

∂ΞA

)(
∂ΦA(F )

∂Fiα
−

∂ΦA(F̂ )

∂Fiα

)

+ ∂αv̂i

(
∂g(Ξ)

∂ΞA
−

∂g(Ξ̂)

∂ΞA
−

∂2g(Ξ̂)

∂ΞA∂ΞB
(ΞB − Ξ̂B)

)
∂ΦA(F̂ )

∂Fiα
. (2.10)

The details of the lengthy computation can be found in [13] and use in a sub-

stantial way the null-Lagrangian identity (2.4). The reader may consult the

following section where a similar computation is performed for a relaxation

approximation of (2.1).

The identity (2.9) concerns general solutions of the enlarged systems (2.6)

and (2.8). It is then restricted to functions (v,Ξ = Φ(F )) and (v̂, Ξ̂ = Φ(F̂ ))

as emerge from the embeddings of (2.1) to (2.6) and (2.7) to (2.8). The

resulting relative energy and corresponding flux are

Hr = ηr(v,Φ(F ) | v̂,Φ(F̂ ))

=
1

2
|v − v̂|2 + g(Φ(F )) − g(Φ(F̂ )) −

∂g

∂ΞA
(Φ(F̂ ))(Φ(F )A − Φ(F̂ )A) ,

Qα
r = qα

r (v,Φ(F ) | v̂,Φ(F̂ ))

=

(
∂g

∂ΞA
(Φ(F )) −

∂g

∂ΞA
(Φ(F̂ ))

)
(vi − v̂i)

∂ΦA(F )

∂Fiα

(2.11)

Under a uniform convexity assumption for g, one can control the norm

Ψd(t) :=

∫

Rd

(
|v − v̂|2 + |Φ(F ) − Φ(F̂ )|2

)
(x, t) dx , (2.12)

d = 2, 3, for 0 < t ≤ T . This norm is stronger than L2 with respect to the

growth in F . We show:

Theorem 2.1. [13]. Let {yε} be a family of smooth solutions to (1.4) and

ŷ a smooth solution of (1.1), defined on R
d × [0, T ], d = 2, 3 and decaying

sufficiently fast at infinity. Assume that g satisfies

0 < γI ≤ ∇2
Ξg(Ξ) ≤ ΓI , |∇3

Ξg(Ξ)| ≤ M . (2.13)
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There exists a constant C = C(T, γ,Γ,M, v̂, Ξ̂) > 0 such that

Ψd(t) ≤ C
(
Ψd(0) + ε2

)
. (2.14)

If moreover the data satisfy Ψε
d(0) → 0 as ε ↓ 0, then

sup
t∈[0,T ]

(
‖vε(·, t) − v̂(·, t)‖L2(Rd) + ‖Φ(F ε(·, t)) − Φ(F̂ (·, t))‖L2(Rd)

)
→ 0 ,

as ε ↓ 0.

3. A relaxation scheme for polyconvex elastodynamics

We next consider the stress relaxation model

∂tvi − ∂α

(
TA ∂ΦA

∂Fiα

)
= 0

∂tFiα − ∂αvi = 0

∂t

(
TA −

∂σI

∂ΞA
(Φ(F ))

)
= −

1

ε

(
TA −

∂σE

∂ΞA
(Φ(F ))

)

∂βFiα − ∂αFiβ = 0

(3.1)

and wish to compare the equations of elastodynamics

∂tvi − ∂α

(
∂σE

∂ΞA
(Φ(F ))

∂ΦA

∂Fiα

)
= 0

∂tFiα − ∂αvi = 0

(3.2)

Note that the stress in the model (3.2) satisfies

S∞ =
∂

∂F
σE(Φ(F ))

and thus, when σE is convex, the model (3.2) corresponds to polyconvex

elasticity.

The model (3.1) corresponds to a stress relaxation theory where the stress

is decomposed into an instantaneous and a viscoelastic part

S = TA ∂ΦA

∂F
=

∂(σI ◦ Φ)

∂F
+ τA ∂ΦA

∂F
(3.3)

where the instantaneous elasticity is derived from a polyconvex potential

σI(Φ(F )) while the viscoelastic part is determined by internal variables τA

evolving according to the model

∂tτ
A = −

1

ε

(
τA −

∂(σE − σI)

∂ΞA
(Φ(F ))

)
(3.4)
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Note that when expressed in terms of the motion y the model (3.1) takes

the form
∂2y

∂t2
= ∇ ·

(∂(σI ◦ Φ)

∂F
(∇y) + τA ∂ΦA

∂F
(∇y)

)

∂τA

∂t
= −

1

ε

(
τA −

∂(σE − σI)

∂ΞA
(Φ(∇y))

) (3.5)

Of course it may recast in the form of a theory with memory by integrat-

ing (3.4). We will see that the model (3.1) has very interesting structural

properties.

3.1. The augmented relaxation system. The somewhat unconventional

form of the above stress relaxation theory can be motivated (and was guided)

by an attempt to mimick the structure of the polyconvex elastodynamics

system described in section 2.

Consider the relaxation system

∂tvi − ∂α

( ∂ΦA

∂Fiα
TA
)

= 0

∂tΞ
A − ∂α

( ∂ΦA

∂Fiα
vi

)
= 0

∂t

(
TA −

∂σI

∂ΞA
(Ξ)
)

= −
1

ε

(
TA −

∂σE

∂ΞA
(Ξ)
)

(3.6)

For this model the stress is

Siα = TA ∂ΦA

∂Fiα

ans formally as ε → 0

Siα = TA(Ξ)
∣∣∣
eq

∂ΦA

∂Fiα
=

∂σE

∂ΞA
(Ξ)

∂ΦA

∂Fiα

it approximates the extended elastodynamics system

∂tvi − ∂α

(∂σE

∂ΞA
(Ξ)

∂ΦA

∂Fiα

)
= 0

∂tΞ
A − ∂α

( ∂ΦA

∂Fiα
vi

)
= 0

(3.7)

Therefore, formally, the ε → 0 relaxation limit of (3.6) produces the ex-

tended elastodynamics system (3.7). Observe that solutions of (3.1) satisfy

the kinematic constraints (2.5) and thus, for a polyconvex stored energy,

the relaxation system (3.1) enjoys the same relation with the system (3.6)

as the equations of elastodynamics (2.1) have with the system (3.2).
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Next, we develop the Chapman-Enskog expansion for the relaxation limit

from (3.6) to (3.7). Introduce the expansion for the internal variable TA

TA,ε = TA
0 + εTA

1 + O(ε2)

and, accordingly,

Sε
iα = TA

0

∂ΦA

∂Fiα
+ εTA

1

∂ΦA

∂Fiα
+ O(ε2)

to (3.6) in order to obtain

TA
0 =

∂σE

∂ΞA
(Ξ)

∂t

(∂σE

∂ΞA
(Ξ) −

∂σI

∂ΞA
(Ξ)
)

= −TA
1 + O(ε)

The effective momentum equation becomes

∂tvi − ∂α

(
TA

0

∂ΦA

∂Fiα

)
= ε∂α

(
TA

1

∂ΦA

∂Fiα

)
+ O(ε2)

= ε∂α(Djβ
iα ∂βvj) + O(ε2)

where

D
jβ
iα :=

∂2(σI − σE)

∂ΞA∂ΞB

∂ΦA

∂Fiα

∂ΦB

∂Fjβ

(3.8)

Thus, as ε → 0, the relaxation process is approximated by the system

∂tΞ
A − ∂α

( ∂ΦA

∂Fiα
vi

)
= 0

∂tvi − ∂α

(
TA

0

∂ΦA

∂Fiα

)
= ε∂α(Djβ

iα ∂βvj)

Note that for Σ := σI − σE convex the diffusivity tensor D satisfies the

ellipticity condition D
jβ
iα MiαMjβ ≥ 0 , ∀M ∈ R

3×3 . The latter is stronger

than the Legendre-Hadamard condition, and can be achieved for both the

instantaneous potential σI ◦ Φ and the equilibrium potential σE ◦ Φ poly-

convex.

3.2. Entropy of the augmented relaxation system. We next construct

an entropy for the augmented relaxation system. Note that, if a function

Ψ(Ξ, τ) can be constructed defined ∀ (Ξ, τ) and satisfying

∂Ψ

∂ΞA
(Ξ, τ) = TA =

∂σI(Ξ)

∂ΞA
+ τA

∂Ψ

∂τA

(
τA −

∂(σE − σI)

∂ΞA

)
≥ 0 ∀ (Ξ, τ) ,

(3.9)
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then the relaxation system is endowed with an H-theorem

∂t

(1

2
|v|2 + Ψ(Ξ, τ)

)
− ∂α

(
viSiα

)
+

1

ε

∂Ψ

∂τA

(
τA −

∂(σE − σI)

∂ΞA

)
= 0 . (3.10)

This entropy identity is based on the null-Lagrangian property (2.4) and

follows, using (3.6), (2.4) and (3.9), by the computation

∂t

(1

2
|v|2 + Ψ(Ξ, τ)

)
= vi∂tvi +

∂Ψ

∂ΞA
∂tΞ

A +
∂Ψ

∂τA
∂tτ

A

= vi∂αSiα +
∂Ψ

∂ΞA
∂α(

∂ΦA

∂Fiα
vi) +

∂Ψ

∂τA
∂tτ

A

= vi∂αSiα +
∂Ψ

∂ΞA

∂ΦA

∂Fiα
∂αvi +

∂Ψ

∂τA
∂tτ

A

= ∂α(viSiα) −
1

ε

∂Ψ

∂τA

(
τA −

∂(σE − σI)

∂ΞA

)

Our next objective is to examine the solvability of (3.9) and study the

convexity of the entropy. In this matter we follow the analysis in [13, 17].

Integrating (3.9)1, we see that

Ψ(Ξ, τ) = σI(Ξ) + Ξ · τ + G(τ) (3.11)

where the integrating factor G(τ) has to be selected so that it satisfies the

inequality
(
ΞA +

∂G

∂τA

) (
τA +

∂Σ

∂τA

)
≥ 0 ∀ (Ξ, τ) (3.12)

where Σ = σI − σE .

For the solvability of (3.12) we have

Lemma 3.1. The functions G(τ) and Σ(Ξ) satisfy

(Ξ + ∇τG) · (τ + ∇ΞΣ) ≥ 0 ∀ (Ξ, τ) , (3.13)

if and only if 




Ξ + ∇τG = 0 iff τ + ∇ΞΣ = 0

G is convex

Σ is convex

(3.14)

Proof. We first show that (3.13) implies (3.14). Fix Ξ0, τ0 such that Ξ0 +

∇τG(τ0) = 0. Consider a fixed direction eA and the increment along this

direction Ξ = Ξ0 + teA. Then (3.13) implies that eA · (τ0 + ∇ΞΣ(Ξ0)) = 0

for every direction eA and thus τ0 + ∇ΞΣ(Ξ0) = 0. Similarly, if Ξ0, τ0 are
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such that τ0 + ∇ΞΣ(Ξ0) = 0 then also Ξ0 + ∇τG(τ0) = 0. This proves the

first statement in (3.14).

Fix now Ξ1, Ξ2 and let τ2 = −∇ΞΣ(Ξ2). Then Ξ2 = −∇τG(τ2), (3.13) is

rewritten as

(Ξ1 − Ξ2) ·
(
∇ΞΣ(Ξ1) −∇ΞΣ(Ξ2)

)
≥ 0 (3.15)

and Σ is convex. A similar argument shows that G is convex.

The converse is proved by re-expressing the convexity inequality (3.15) in

the form (3.13) by using the first statement in the right of (3.14). �

Lemma 3.1 indicates that the solvability of (3.9) is equivalent to the

convexity of Σ := σI − σE . To complete the details of the construction of

Ψ, we assume for simplicity that

∇2
ΞΣ > 0 and ∇ΞΣ : R

D → R
D is onto, (h0)

with D = 19 for d = 3 and D = 5 for d = 2. Define the inverse map

(∇ΞΣ)−1 : R
D → R

D, and let h(τ) = −(∇ΞΣ)−1(−τ). Then ∇τh is sym-

metric and the differential system ∇τG = h is solvable. Its solution G is a

convex function and satisfies

∇τG(τ) = − (∇ΞΣ)−1 (−τ)

∇2
τG(τ) =

[
∇2

ΞΣ(−∇τG)
]−1

(3.16)

Ψ is defined by (3.11) with G as above. Observe that, by (3.9) and (3.14),

∂Ψ

∂ΞA
(Ξ,−∇ΞΣ) =

∂σE

∂ΞA
(Ξ)

∂Ψ

∂τA
(Ξ,−∇ΞΣ) = ΞA +

∂G

∂τA

∣∣∣
τA=−

∂(σI−σE)

∂ΞA

= 0
(3.17)

and, by selecting a normalization constant,

Ψ(Ξ,−∇ΞΣ) = σE(Ξ) (3.18)

We next consider the convexity of Ψ(Ξ, τ) determined by the matrix

∇2
(Ξ,τ)Ψ =

[
∇2

ΞσI I

I ∇2
τG

]

Lemma 3.2. Let Σ = σI − σE satisfy (h0) and assume that σI , Σ satisfy

for γI > γv > 0

∇2
ΞσI ≥ γI > γv ≥ ∇2

ΞΣ > 0 (h1)



14 ATHANASIOS E. TZAVARAS

Then for some δ > 0 we have

∇2
(Ξ,τ)Ψ ≥ δ I(Ξ,τ)

Proof. By differentiating the relation ∇ΞΣ = −(∇τG)−1(−Ξ) we get

(
∇2

ΞΣ
)
(−∇τG) · ∇2

τG(τ) = I

Hence(
∇2

(Ξ,τ)Ψ
)

(Ξ, τ) · (Ξ, τ) = (∇2
ΞσI)Ξ · Ξ + 2Ξ · τ +

(
∇2

ΞΣ
)
−1

τ · τ

≥ γI |Ξ|
2 + 2Ξ · τ +

1

γv
|τ |2

≥ (γI − δ)|Ξ|2 +
( 1

γv
−

1

δ

)
|τ |2

which can be made positive definite by selecting γI > δ > γv. �

Remark 3.3. Hypothesis (h1) implies that σE must be convex, which dictates

that the limiting equations arise from a polyconvex energy.

3.3. Relative entropy for the augmented system. Next we compare a

solution (v,Ξ, τ) of the system (3.6) with a solution (v̂, Ξ̂) of the extended

elastodynamics system (3.7), using a relative entropy calculation in the spirit

of [13, 18].

The relative entropy is defined by taking the Taylor polynomial of a

nonequilibrium relative to a Maxwellian solution

Er :=
1

2
|v − v̂|2 + Ψ(Ξ, τ) − Ψ

(
Ξ̂,

∂(σE − σI)

∂Ξ
(Ξ̂)
)

−
∂Ψ

∂Ξ
(Ξ̂,−

∂Σ

∂Ξ
(Ξ̂)) · (Ξ − Ξ̂) −

∂Ψ

∂τ

(
Ξ̂,−

∂Σ

∂Ξ
(Ξ̂)
)
·
(
τ −

∂(σE − σI)

∂Ξ
(Ξ̂)
)

where Σ = σI − σE . By (3.17), (3.18), Er has the simple form

Er =
1

2
|v − v̂|2 + Ψ(Ξ, T −

∂σI

∂Ξ
) − σE(Ξ̂) −

∂σE

∂Ξ
(Ξ̂) · (Ξ − Ξ̂) (3.19)

We now recall the identities: The H-theorem for the relaxation approxi-

mation

∂t

(1

2
|v|2 + Ψ(Ξ, τ)

)
− ∂α(viSiα) +

1

ε

∂Ψ

∂τA

(
τA −

∂(σE − σI)

∂ΞA

)
= 0 (3.20)

and the energy equation for the extended elastodynamics system

∂t

(1

2
|v̂|2 + σE(Ξ̂)

)
− ∂α

(∂σE

∂ΞA
(Ξ̂)

∂ΦA

∂Fiα
(F̂ )v̂i

)
= 0 (3.21)
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Finally we form the difference equations

∂t(vi − v̂i) − ∂α

(
TA ∂ΦA

∂Fiα
(F ) −

∂σE

∂ΞA
(Ξ̂)

∂ΦA

∂Fiα
(F̂ )

)
= 0,

∂t(Ξ
A − Ξ̂A) − ∂α

(
∂ΦA

∂Fiα
(F ) vi −

∂ΦA

∂Fiα
(F̂ ) v̂i

)
= 0

and compute using (3.6) and (3.7) to obtain

∂t

[
v̂i(vi − v̂i) +

∂σE

∂ΞA
(Ξ̂) (ΞA − Ξ̂A)

]

− ∂α

[
v̂i

(
TA ∂ΦA

∂Fiα
(F ) −

∂σE

∂ΞA
(Ξ̂)

∂ΦA

∂Fiα
(F̂ )

)

+
∂σE

∂ΞA
(Ξ̂)

(
∂ΦA

∂Fiα
(F ) vi −

∂ΦA

∂Fiα
(F̂ ) v̂i

)]

= (∂tv̂i)(vi − v̂i) + ∂t

(
∂σE

∂ΞA
(Ξ̂)

)
(ΞA − Ξ̂A)

− ∂αv̂i

(
TA ∂ΦA

∂Fiα
(F ) −

∂σE

∂ΞA
(Ξ̂)

∂ΦA

∂Fiα
(F̂ )

)

− ∂α

(
∂σE

∂ΞA
(Ξ̂)

)(
∂ΦA

∂Fiα
(F ) vi −

∂ΦA

∂Fiα
(F̂ ) v̂i

)

= −∂α

(
∂σE

∂ΞA
(Ξ̂)

)( ∂ΦA

∂Fiα
(F ) −

∂ΦA

∂Fiα
(F̂ )
)

vi

− ∂αv̂i

[
TA ∂ΦA

∂Fiα
(F ) −

∂σE

∂ΞA
(Ξ̂)

∂ΦA

∂Fiα
(F̂ ) −

∂2σE(Ξ̂)

∂ΞA∂ΞB

∂ΦA

∂Fiα
(F̂ )(ΞB − Ξ̂B)

]

=: I (3.22)

By rearranging the terms and using the null-Lagrangian property (2.4)

we may rewrite I in the form

I = −∂α

[
v̂i

∂σE

∂ΞA
(Ξ̂)

(
∂ΦA

∂Fiα
(F ) −

∂ΦA

∂Fiα
(F̂ )

)]

− ∂α

(
∂σE

∂ΞA
(Ξ̂)

)(
∂ΦA

∂Fiα
(F ) −

∂ΦA

∂Fiα
(F̂ )

)
(vi − v̂i)

− (∂αv̂i)
∂ΦA

∂Fiα
(F̂ )
(∂σE

∂ΞA
(Ξ) −

∂σE

∂ΞA
(Ξ̂) −

∂2σE

∂ΞA∂ΞB
(Ξ̂)(ΞB − Ξ̂B)

)

− (∂αv̂i)

(
∂σE

∂ΞA
(Ξ) −

∂σE

∂ΞA
(Ξ̂)

)(
∂ΦA

∂Fiα
(F ) −

∂ΦA

∂Fiα
(F̂ )

)

− (∂αv̂i)

(
TA −

∂σE

∂ΞA
(Ξ)

)
∂ΦA

∂Fiα
(F )

= −∂α

[
v̂i

∂σE

∂ΞA
(Ξ̂)

(
∂ΦA

∂Fiα
(F ) −

∂ΦA

∂Fiα
(F̂ )

)]
− Q1 − Q2 − Q3 − L (3.23)
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That is the term I is written as the sum of a divergence term plus the

quadratic terms Qi plus a linear term L that is controlled by the distance

from equilibrium.

Combining (3.20), (3.21), (3.22) and (3.23) we arrive at the relative en-

tropy identity

∂tEr − ∂αFα,r +
1

ε
D = Q1 + Q2 + Q3 + L (3.24)

where the flux is

Fα,r :=

(
TA −

∂σE

∂ΞA
(Ξ̂)

)
(vi − v̂i)

∂ΦA

∂Fiα
(F ) (3.25)

the dissipation is

1

ε
D =

1

ε

∂Ψ

∂τA

(
Ξ, T −

∂σI

∂Ξ

) (
TA −

∂σE

∂ΞA

)
(3.26)

the quadratic errors Qi are

Q1 = ∂α

(
∂σE

∂ΞA
(Ξ̂)

)(
∂ΦA

∂Fiα
(F ) −

∂ΦA

∂Fiα
(F̂ )

)
(vi − v̂i)

Q2 = (∂αv̂i)
∂ΦA

∂Fiα
(F̂ )
(∂σE

∂ΞA
(Ξ) −

∂σE

∂ΞA
(Ξ̂) −

∂2σE(Ξ̂)

∂ΞA∂ΞB
(ΞB − Ξ̂B)

)

Q3 = (∂αv̂i)

(
∂σE

∂ΞA
(Ξ) −

∂σE

∂ΞA
(Ξ̂)

)(
∂ΦA

∂Fiα
(F ) −

∂ΦA

∂Fiα
(F̂ )

)
(3.27)

and the linear error L is

L = (∂αv̂i)

(
TA −

∂σE

∂ΞA
(Ξ)

)
∂ΦA

∂Fiα
(F ) (3.28)

Identity (3.24) is the key on which the stability and convergence analysis of

section 4 is based.

4. Stability theorem

Consider a family of smooth solution {(vε, F ε, τ ε)}ε>0 to the relaxation

system

∂tvi − ∂α

(
TA ∂ΦA

∂Fiα

)
= 0

∂tFiα − ∂αvi = 0

∂t

(
TA −

∂σI

∂ΞA
(Φ(F ))

)
= −

1

ε

(
TA −

∂σE

∂ΞA
(Φ(F ))

)
(4.1)
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We wish to compare them with a smooth solution (v̂, F̂ ) of the equations of

elastodynamics

∂tvi − ∂α

(
∂σE

∂ΞA
(Φ(F ))

∂ΦA

∂Fiα

)
= 0

∂tFiα − ∂αvi = 0

(4.2)

The stress in model (3.2) satisfies

Siα =
∂

∂Fiα
σE(Φ(F ))

and thus, when σE is convex, the model (3.2) corresponds to polyconvex

elasticity.

The data F0 and F̂0 are taken gradients; the property is preserved and

both F and F̂ are gradients for all times. The function (v,Φ(F ), τ) is a

smooth solution of the augmented relaxation system (3.6) while the function

(v̂,Φ(F̂ )) satisfies the extended elastodynamics equations (3.7). From the

results of section 3.3, smooth solutions of (3.6) and (3.7) satisfy (3.24).

The identity is of course inherited by (v,Φ(F ), τ) and (v̂,Φ(F̂ )). The

resulting relative energy and associated flux,

er = Er

(
v,Φ(F ), τ

∣∣ v̂,Φ(F̂ ),
∂(σE − σI)

∂Ξ
(Φ(F̂ ))

)

=
1

2
|v − v̂|2 + Ψ

(
Φ(F ), T −

∂σI

∂Ξ
(Φ(F ))

)
− σE(Φ(F̂ ))

−
∂σE

∂ΞA
(Φ(F̂ ))(Φ(F )A − Φ(F̂ )A) ,

(4.3)

fα = Fα,r

(
v,Φ(F ), τ

∣∣ v̂,Φ(F̂ ),
∂(σE − σI)

∂Ξ
(Φ(F̂ ))

)

=

(
TA −

∂σE

∂ΞA
(Φ(F̂ ))

)
(vi − v̂i)

∂ΦA

∂Fiα
(F ) ,

(4.4)

satisfy

∂ter − ∂αfα +
1

ε
D = Q1 + Q2 + Q3 + L (4.5)

where the Qi, L and D are now computed for Ξ = Φ(F ) and Ξ̂ = Φ(F̂ ).

We prove convergence of the relaxation system to polyconvex elastody-

namics so long as the limit solution is smooth.

Theorem 4.1. Let (vε, F ε, T ε), F ε = ∇yε, be smooth solutions of (3.1)

and (v̂, F̂ ), F̂ = ∇ŷ, a smooth solution of (3.2), defined on R
d × [0, T ] and

decaying fast as |x| → ∞. The relative energy er defined in (4.3) satisfies
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(4.5). Assume that σI , σE satisfy for some constants γI > γv > 0 and

M > 0 the hypotheses

∇2σI ≥ γII > γvI ≥ ∇2(σI − σE) > 0 , (h1)

|∇2σE| ≤ M , |∇3σE| ≤ M . (h2)

There exists a constant s and C = C(T, γI , γv,M,∇v̂,∇F̂ ) > 0 independent

of ε such that

∫

Rd

er(x, t)dx ≤ C

(∫

Rd

er(x, 0)dx + ε

)
.

In particular, if the data satisfy

∫

Rd

eε
r(x, 0)dx −→ 0 , as ε ↓ 0 ,

then

sup
t∈[0,T ]

∫

Rd

|vε − v̂|2 + |F ε − F̂ |2 + |τ ε − τ∞(F̂ )|2dx −→ 0 ,

where τ∞(F̂ ) = ∂(σE−σI )
∂Ξ (Φ(F̂ )).

Proof. The equation (4.5),

∂ter + ∂αfα +
1

ε
D = J ,

is integrated on R
d × (0, t) and gives

∫

Rd

er(x, t)dx −

∫

Rd

er(x, 0)dx

+
1

ε

∫ t

0

∫

Rd

Ddxdτ =

∫ t

0

∫

Rd

Jdxdτ (4.6)

From lemma 3.2 and (3.19) we see that there exists a positive constant

c = c(γI , γv) such that

Er ≥ c

(
|v − v̂|2 + |Ξ − Ξ̂||2 + |τ −

∂(σE − σI)

∂Ξ
(Ξ̂)|2

)

and thus, by (4.3),

er ≥ c
(
|v − v̂|2 + |Φ(F ) − Φ(F̂ )|2 + |τ − τ∞(F̂ )|2

)
.
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Note that

D :=
∂Ψ

∂τA

(
τA −

∂(σE − σI)

∂ΞA

)

= (Ξ + ∇τG) · (τ + ∇ΞΣ)

= (∇τG(τ) −∇τG(−∇ΞΣ)) · (τ + ∇ΞΣ)

≥
(
min∇2

τG
)
|τ + ∇ΞΣ|2

≥
1

γv
|τ −∇Ξ(σE − σI)|

2

(4.7)

Let now C be a positive constant depending on the L∞-norm of v̂, F̂ ,

∂alphav̂, ∂αF̂ and the constants γI , γv and M . Using (3.27), (h2), and (3.28)

we have
∫

Rd

|Q1|dx ≤ C

∫

Rd

|v − v̂|2 +
∣∣∣
∂Φ

∂F
(F ) −

∂Φ

∂F
(F̂ )
∣∣∣
2
dx ,

∫

Rd

|Q2|dx ≤ C

∫

Rd

|Φ(F ) − Φ(F̂ )|2dx

∫

Rd

|Q3|dx ≤ C

∫

Rd

|Φ(F ) − Φ(F̂ )|2 +
∣∣∣
∂Φ

∂F
(F ) −

∂Φ

∂F
(F̂ )
∣∣∣
2
dx .

and
∫

Rd

|L|dx ≤
1

ε

1

2γv

∫

Rd

|τ −∇Ξ(σE − σI)|
2dx + Cε

∫

Rd

|
∂Φ

∂F
(F )|2dx

From the identities

∂ detF

∂Fiα
= (cof F )iα ,

∂(cof F )iα
∂Fjβ

= εijkεαβγFkγ ,

we have ∣∣∣
∂Φ

∂F
(F ) −

∂Φ

∂F
(F̂ )
∣∣∣ ≤ C|Φ(F ) − Φ(F̂ )| .

Combining with (4.7) and (4.6) we obtain
∫

Rd

er(x, t)dx +
1

2εγv

∫

Rd

|τ −∇Ξ(σE − σI)|
2dx

=

∫

Rd

er(x, 0)dx + C

∫ t

0

∫

Rd

er(x, τ)dxdτ

+ εC

∫ t

0

∫

Rd

|
∂Φ

∂F
(F )|2dxdτ (4.8)

The H-estimate implies that solution of the relaxation system (3.1) satisfy

the uniform (in ε) bounds
∫

Rd

|v|2 + |Φ(F )|2 + |τ |2dx +
1

εγv

∫

Rd

|τ −∇Ξ(σE − σI)|
2dx
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≤ C

∫

Rd

|v0|
2 + Ψ(Φ(F0), τ0)dx ≤ O(1) (4.9)

The result then follows from (4.8) via Gronwall’s inequality. �
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