Existence of the Semilocal Chern-Simons Vortices

Dongho Chae Department of Mathematics Sungkyunkwan University Suwon 440-746, Korea *e-mail: chae@skku.edu*

Abstract

We consider the Bogomol'nyi equations of the Abelian Chern-Simons-Higgs model with $SU(N)_{\text{global}} \otimes U(1)_{\text{local}}$ symmetry. This is a generalization of the well-known Abelian Chern-Simons-Higgs model with $U(1)_{\text{local}}$ symmetry. We prove existence of both topological and nontopological multivortex solutions of the system on the plane.

1 Introduction

The Abelian Chern-Simons-Higgs model with $SU(N)_{\text{global}} \otimes U(1)_{\text{local}}$ symmetry is defined by the Lagrangian,

$$\mathcal{L} = \frac{\kappa}{4} \epsilon^{\mu\nu\lambda} F_{\mu\nu} A_{\lambda} + (D_{\mu}\Phi)^{\dagger} (D^{\mu}\Phi) - \frac{1}{\kappa^2} |\Phi|^2 (|\Phi|^2 - 1)^2,$$

where $A_{\mu}(\mu = 0, 1, 2)$ is the gauge field on \mathbb{R}^3 , $F_{\mu\nu} = \frac{\partial}{\partial x^{\mu}} A_{\nu} - \frac{\partial}{\partial x^{\nu}} A_{\mu}$ is the corresponding gauge curvature tensor, $D_{\mu} = \frac{\partial}{\partial x^{\mu}} - iA_{\mu}$ is the gauge covariant derivative, $\Phi = (\Phi_1, \Phi_2, \dots, \Phi_N)$ is a \mathbb{C}^N valued function on \mathbb{R}^3 , called the Higgs multiplet, $\epsilon_{\mu\nu\rho}$ is the totally skewsymmetric tensor with $\epsilon_{012} = 1$, and finally $\kappa > 0$ is the Chern-Simons coupling constant. Our metric on \mathbb{R}^3 is $(g_{\mu\nu}) = diag(1, -1, -1)$. This model was suggested by Khare[6], generalizing the original Abelian Chern-Simons-Higgs model, due to Hong-Kim-Pac[4]

and Jackiw-Weinberg[5]. We also mention that there are also studies of the corresponding Abelian Higgs model with $SU(N)_{\text{global}} \otimes U(1)_{\text{local}}$ symmetry in [14], [3]. Similarly to the case of Abelian Chern-Simons-Higgs model, in the static case, the following Bogomol'nyi system in \mathbb{R}^2 is obtained[6],

$$\begin{cases} (D_1 \pm iD_2)\Phi_k = 0, \quad \forall k = 1, \cdots N\\ F_{12} = \pm \frac{2}{\kappa^2} |\Phi|^2 (|\Phi|^2 - 1). \end{cases}$$
(1.1)

This system is equipped with one of the following boundary conditions; either

$$|\Phi(z)|^2 \to 1 \quad \text{as } |z| \to \infty, \tag{1.2}$$

or

$$|\Phi(z)|^2 \to 0 \quad \text{as } |z| \to \infty,$$
 (1.3)

Following the standard Jaffe-Taubes reduction procedure [13], we introduce new variable (u_1, \dots, u_N) by

$$\Phi_k(z) = \exp\left[\frac{1}{2}u_k + i\sum_{j=1}^{M_k} Arg(z - z_{k,j})\right], \quad z = x_1 + ix_2 \in \mathbb{C}^1 = \mathbb{R}^2,$$

where $\mathbb{Z}_k = \{z_{k,j}\}_{j=1}^{M_k}$ is the set of zeros of $\Phi_k(z)$. Then, the system (1.1) becomes the following semilinear elliptic system for (u_1, \dots, u_N) in \mathbb{R}^2 .

$$\Delta u_k = \left(\sum_{j=1}^N e^{u_j}\right) \left(\sum_{j=1}^N e^{u_j} - 1\right) + 4\pi \sum_{j=1}^{M_k} \delta(z - z_{k,j}), \quad k = 1, \cdots, N, \quad (1.4)$$

where we set $\kappa = 2$ for simplicity. In terms of (u_1, \dots, u_N) , the boundary condition (1.2) reads

$$\begin{cases} e^{u_k} \to \sigma_k & \text{as } |z| \to \infty \\ \text{with } \sigma_k \ge 0 \text{ for all } k = 1, \dots N, \text{ and } \sum_{k=1}^N \sigma_k = 1, \end{cases}$$
(1.5)

while (1.3) reads

$$e^{u_k} \to 0 \quad \text{as } |z| \to \infty \quad \text{for all } k = 1, \cdots, N.$$
 (1.6)

The boundary condition (1.5) is called topological, while the boundary condition (1.6) is called nontopological. We observe that when N = 1, the system (1.4) reduces to the well-known (scalar) Chern-Simons equation, for which there are many studies for topological vortices([11, 15]), nontopological vortices([10, 1, 2]), periodic vortex condensates([12, 9, 8, 16]) respectively. We first consider the nontopological case. In the system (1.4) equipped with (1.3), without loss of generality, we assume $M_1 \ge M_k$ for all $k = 1, \dots N$. Let us define

$$f_k(z) = (M_k + 1) \prod_{j=1}^{M_k} (z - z_{k,j}), \quad F_k(z) = \int_0^z f_k(\xi) d\xi.$$
(1.7)

Given $\varepsilon > 0, a = a_1 + ia_2 \in \mathbb{C}$, let us introduce the functions $\rho_{\varepsilon,a}^{(k)}(z)$ by

$$\rho_{\varepsilon,a}^{(k)}(z) = \frac{8\varepsilon^{2M_k+2}|f_k(z)|^2}{\left(1+\varepsilon^{2M_1+2}|F_1(z)+\frac{a}{\varepsilon^{M_1+1}}|^2\right)^2}.$$
(1.8)

We note that for any $\varepsilon > 0$ and $a \in \mathbb{C}^1$, $\ln \rho_{\varepsilon,a}^{(1)}(z)$ is a solution of the Liouville equation.

$$\Delta \ln \rho_{\varepsilon,a}^{(1)}(z) = -\rho_{\varepsilon,a}^{(1)}(z) + 4\pi \sum_{j=1}^{M_1} \delta(z - z_{1,j}).$$
(1.9)

We state the existence theorem for the nontopological vortices.

Theorem 1.1 (Existence of nontopological vortices) Let $N \ge 2$. For each $k = 1, \dots N$ let $M_k \in \mathbb{N}$ with $M_1 \ge M_k$ for all $k = 1, \dots N$, and let $\mathbb{Z}_1, \dots \mathbb{Z}_N$ be given with $\mathbb{Z}_k = \{z_{k,j}\}_{j=1}^{M_k} \in \mathbb{R}^2$. Then, there exists a constant $\varepsilon_1 > 0$ such that for any $\varepsilon \in (0, \varepsilon_1)$ there exists a family of solutions to 1.4, (u_1, u_2, \dots, u_N) equipped with the boundary condition 1.6). Moreover, the solutions we constructed have the following representations:

$$u_1(z) = \ln \rho_{\varepsilon, a_{\varepsilon}^*}^{(1)}(z) + \varepsilon^2 w(\varepsilon |z|) + \varepsilon^2 v_{\varepsilon}^*(\varepsilon z), \qquad (1.10)$$

$$u_k(z) = \ln \rho_{\varepsilon, a_{\varepsilon}^*}^{(k)}(z) + \varepsilon^2 w(\varepsilon |z|) + \varepsilon^2 v_{\varepsilon}^*(\varepsilon z) + \ln \varepsilon^4$$
(1.11)

for all $k = 2, \dots N$.

In (1.10) and (1.11), the function $\varepsilon \mapsto a_{\varepsilon}^*$ is a continuous in a neighborhood of 0, and $|a_{\varepsilon}^*| \to 0$ as $\varepsilon \to 0$. The radial function w in (1.10) and (1.11) has the following asymptotic behavior.

$$w(|z|) = -C_0 \ln |z| + O(1), \qquad (1.12)$$

as $|z| \to \infty$ with the constant $C_0 > 0$ defined by

$$C_0 = \frac{4\pi M_1^2 (2M_1 + 1)^6}{15(M_1 + 1)^5 \sin\left(\frac{\pi M_1}{M_1 + 1}\right)}$$
(1.13)

The function v_{ε}^{*} in (1.10) and (1.11) satisfies

$$\sup_{z \in \mathbb{R}^2} \frac{|v_{\varepsilon}^*(\varepsilon z)|}{\ln(1+|z|)} \le o(1) \qquad as \ \varepsilon \to 0.$$
(1.14)

Next, we consider the system (1.4) equipped with the topological boundary condition (1.5). Without loss of generality, we assume that for $m \in \{1, \dots, N\}$

$$e^{u_k} \to \sigma_k \quad \text{as } |z| \to \infty \quad \text{for } k = 1, \cdots, m.$$
 (1.15)

$$e^{u_k} \to 0$$
 as $|z| \to \infty$ for all $k = m + 1, \cdots, N$, (1.16)

where $\sum_{k=1}^{m} \sigma_k = 1$, and $\sigma_k \in (0, 1]$ for each $k = 1, \dots, m$. The following is our second main theorem.

Theorem 1.2 (Existence of topological vortices) In order to have solution to the system (1.4) equipped with (1.15) and (1.16), it is necessary that

$$M_1 = M_2 = \dots = M_m (\equiv M), \quad and \quad M_k < M \text{ for all } k = m + 1, \dots, N$$
(1.17)

If the condition (1.17) is satisfied, then there exists a solution (u_1, \dots, u_N) to the problem. Moreover, the solutions we constructed have the following representations:

$$u_k(z) = \ln\left(\sigma_k \prod_{j=1}^M \frac{|z - z_{k,j}|^2}{(\mu + |z - z_{1,j}|^2)}\right) + v \quad \text{for } k = 1, \cdots, m,$$
(1.18)

while

$$u_k(z) = \ln\left(\frac{\prod_{j=1}^{M_k} |z - z_{k,j}|^2}{\prod_{j=1}^{M} (\mu + |z - z_{1,j}|^2)}\right) + v \quad \text{for } k = m + 1, \cdots, N$$
(1.19)

for a function $v \in \bigcap_{q=1}^{\infty} H^q(\mathbb{R}^2)$.

2 Existence of Nontopological Vortices

In this section our aim is to prove Theorem 1.1. From the equation, $\Delta \ln |z - z_0|^2 = 4\pi \delta(z - z_0)$ in \mathbb{R}^2 we find that

$$\Delta\left(u_k - u_1 - \sum_{j=1}^{M_k} \ln|z - z_{k,j}|^2 + \sum_{j=1}^{M_1} \ln|z - z_{1,j}|^2\right) = 0.$$

Hence, we obtain the relations between u_1 and u_k 's

$$u_k = u_1 + \ln\left(\frac{\prod_{j=1}^{M_k} |z - z_{k,j}|^2}{\prod_{j=1}^{M_1} |z - z_{1,j}|^2}\right) + h_k(z)$$
(2.1)

for all $k = 1, \dots, N$, where $h_k(z)$ is a harmonic function in \mathbb{R}^2 . We choose

$$h_k(z) \equiv \ln \varepsilon^{4+2M_k - 2M_1}$$

Then, (2.1) becomes

$$u_k = u_1 + \ln\left(\frac{\varepsilon^{4+2M_k - 2M_1} \prod_{j=1}^{M_k} |z - z_{k,j}|^2}{\prod_{j=1}^{M_1} |z - z_{1,j}|^2}\right).$$
(2.2)

We introduce $g_{\varepsilon,a}^{(k)}(z), \rho_k(r), k = 1, \dots N$ as follows

$$g_{\varepsilon,a}^{(k)}(z) = \frac{1}{\varepsilon^2} \rho_{\varepsilon,a}^{(k)}(\frac{z}{\varepsilon}), \qquad \rho_k(r) = \frac{8(M_k + 1)^2 r^{2M_k}}{(1 + r^{2M_1 + 2})^2} \left(= \lim_{\varepsilon \to 0} g_{\varepsilon,0}^{(k)}(z) \right).$$
(2.3)

Let us make a change of variables from u_1 to v by the following formula

$$u_1(z) = \ln \rho_{\varepsilon,a}^{(1)}(z) + \varepsilon^2 w(\varepsilon |z|) + \varepsilon^2 v(\varepsilon x), \qquad (2.4)$$

where $w(\cdot)$ is a radial function to be determined below. Then, after elementary computations we find that combination of (2.2) and (2.4) implies the following representation formula for u_k ,

$$u_k(z) = \ln \rho_{\varepsilon,a}^{(k)}(z) + \varepsilon^2 w(\varepsilon |z|) + \varepsilon^2 v(\varepsilon x) + \ln \varepsilon^4$$
(2.5)

for all $k = 2, \dots N$.

Then, the equation for u_1 in (1.4) can be written as the functional equation $P(v, a, \varepsilon) = 0$, where

$$P(v, a, \varepsilon) = \Delta v + \frac{1}{\varepsilon^2} g_{\varepsilon,a}^{(1)}(z) (e^{\varepsilon^2 (v+w)} - 1) - [g_{\varepsilon,a}^{(1)}(z)]^2 e^{2\varepsilon^2 (v+w)} + \varepsilon^2 \sum_{k=2}^N g_{\varepsilon,a}^{(k)}(z) e^{\varepsilon^2 (v+w)} - \varepsilon^4 \sum_{k=2}^N g_{\varepsilon,a}^{(1)}(z) g_{\varepsilon,a}^{(k)}(z) e^{2\varepsilon^2 (v+w)} - \varepsilon^8 \sum_{k,l=2}^N g_{\varepsilon,a}^{(l)}(z) g_{\varepsilon,a}^{(k)}(z) e^{2\varepsilon^2 (v+w)}.$$
(2.6)

Now we introduce the functions spaces introduced in [1]. Let us fix $\alpha \in (0, \frac{1}{2})$ throughout this paper. Following [1], we introduce the Banach spaces X_{α} and Y_{α} as

$$X_{\alpha} = \{ u \in L^{2}_{loc}(\mathbb{R}^{2}) \mid \int_{\mathbb{R}^{2}} (1 + |x|^{2+\alpha}) |u(x)|^{2} dx < \infty \}$$

equipped with the norm $||u||_{X_{\alpha}}^2 = \int_{\mathbb{R}^2} (1+|x|^{2+\alpha})|u(x)|^2 dx$, and

$$Y_{\alpha} = \{ u \in W_{loc}^{2,2}(\mathbb{R}^2) \mid \|\Delta u\|_{X_{\alpha}}^2 + \left\| \frac{u(x)}{1 + |x|^{1 + \frac{\alpha}{2}}} \right\|_{L^2(\mathbb{R}^2)}^2 < \infty \}$$

equipped with the norm $||u||_{Y_{\alpha}}^2 = ||\Delta u||_{X_{\alpha}}^2 + \left\|\frac{u(x)}{1+|x|^{1+\frac{\alpha}{2}}}\right\|_{L^2(\mathbb{R}^2)}^2$. We recall the following propositions proved in [1].

Proposition 2.1 Let Y_{α} be the function space introduced above. Then we have the followings.

- (i) If $v \in Y_{\alpha}$ is a harmonic function, then $v \equiv constant$.
- (ii) There exists a constant $C_1 > 0$ such that for all $v \in Y_{\alpha}$

$$|v(x)| \le C_1 ||v||_{Y_\alpha} \ln(e+|x|), \qquad \forall x \in \mathbb{R}^2.$$

Proposition 2.2 Let $\alpha \in (0, \frac{1}{2})$, and let us set

$$L = \Delta + \rho_1 : Y_\alpha \to X_\alpha. \tag{2.7}$$

We have

$$KerL = Span\{\varphi_+, \varphi_-, \varphi_0\}, \qquad (2.8)$$

where we denoted

$$\varphi_{+}(r,\theta) = \frac{r^{M_{1}+1}\cos(M_{1}+1)\theta}{1+r^{2M_{1}+2}}, \quad \varphi_{-}(r,\theta) = \frac{r^{M_{1}+1}\sin(M_{1}+1)\theta}{1+r^{2M_{1}+2}}, \quad (2.9)$$

and

$$\varphi_0 = \frac{1 - r^{2M_1 + 2}}{1 + r^{2M_1 + 2}}.$$
(2.10)

Moreover, we have

$$ImL = \{ f \in X_{\alpha} | \int_{\mathbb{R}^2} f\varphi_{\pm} = 0 \}.$$

$$(2.11)$$

We can check easily that P is a well defined continuous mapping from $B_{\varepsilon_0} \subset Y_{\alpha} \times \mathbb{C} \times \mathbb{R}_+$ into X_{α} , where $B_{\varepsilon_0} = \{ \|v\|_{Y_{\alpha}} + |a| \leq \varepsilon < \varepsilon_0 \}$ for sufficiently small ε_0 . In order to have a continuous extension to $\varepsilon = 0$ of $P(\cdot)$ we require that $\lim_{\varepsilon \to 0} P(0, 0, \varepsilon) = 0$, which implies the following equation for w,

$$\Delta w + \rho_1 w - \rho_1^2 = 0. \tag{2.12}$$

We first note the following lemma about asymptotic behaviors of the solutions $w \in Y_{\alpha}$, the proof of which is in Appendix.

Lemma 2.1 Let C_0 be the number introduced in (1.13). Then, there exist radial solutions w(|z|) of (2.12) belonging to Y_{α} , and satisfying the asymptotic formula in (1.12).

In order to obtain the linearized operator $P'_{(v,a)}(0,0,0) = \mathcal{A}$ we first compute,

$$\frac{\partial g_{\varepsilon,a}^{(k)}(z)}{\partial a_1}\bigg|_{\varepsilon=0,a=0} = -4\rho_k\varphi_+, \qquad \frac{\partial g_{\varepsilon,a}^{(k)}(z)}{\partial a_2}\bigg|_{\varepsilon=0,a=0} = -4\rho_k\varphi_-,$$

for all $k = 1, \dots, N$, where

Using these we find

$$\mathcal{A}[\nu,\beta] = L\nu - 4\left(\rho_1 w - 2\rho_1^2\right)\left(\varphi_+\beta_1 + \varphi_-\beta_2\right).$$

For the linearized operator $\mathcal{A}[\cdot]$ we need the following key lemma lemma.

Lemma 2.2 The operator $\mathcal{A}: Y_{\alpha} \times \mathbb{R}^2 \to X_{\alpha}^2$ defined above is onto. Moreover, kernel of \mathcal{A} is given by

$$Ker\mathcal{A} = Span\{\varphi_+, \varphi_-, \varphi_0\} \times \{(0, 0)\}.$$
(2.13)

Thus, if we decompose $Y_{\alpha} \times \mathbb{R}^2 = U_{\alpha} \oplus Ker\mathcal{A}$, where we set $U_{\alpha} = (Ker\mathcal{A})^{\perp}$, then \mathcal{A} is an isomorphism from U_{α} onto X_{α} .

For the proof of Lemma 2.2 we need the following proposition, the proof of which is in Appendix.

Proposition 2.3

$$I_{\pm} := \int_{\mathbb{R}^2} (\rho_1 w - 2\rho_1^2) \varphi_{\pm}^2 dx \neq 0.$$

With Proposition 2.3 equipped, the proof of Lemma 2.2 is the same as the one in [1], since the linearized operator, \mathcal{A} is the same as the one in it. We are now ready to prove our main theorem.

Proof of Theorem 1.1: Let us set

$$U_{\alpha} = (KerL)^{\perp} \times \mathbb{R}^2.$$

Then, Lemma 2.2 shows that $P'_{(v,\xi,\beta)}(0,0,0,0): U_{\alpha} \to X_{\alpha} \times X_{\alpha}$ is an isomorphism for $\alpha \in (0, \frac{1}{2})$. Then, the standard implicit function theorem(See e.g. [17]), applied to the functional $P: U_{\alpha} \times (-\varepsilon_0, \varepsilon_0) \to X_{\alpha} \times X_{\alpha}$, implies that there exists a constant $\varepsilon_1 \in (0, \varepsilon_0)$ and a continuous function $\varepsilon \mapsto \psi_{\varepsilon}^* := (v_{\varepsilon}^*, a_{\varepsilon}^*)$ from $(0, \varepsilon_1)$ into a neighborhood of 0 in U_{α} such that

$$P(v_{\varepsilon}^*, a_{\varepsilon}^*, \varepsilon) = 0 \text{ for all } \varepsilon \in (0, \varepsilon_1)$$

This completes the proof of Theorem 1.1. Since $M_1 \ge M_k$ for all $k = 1, \dots, N$, the representation of solutions u_k , and the explicit form of

$$\ln[\rho_{\varepsilon,a_{\varepsilon}}^{(k)}(z)] = -[(4M_1 - 2M_k) + 4]\ln|z| + O(1)$$

as $|z| \to \infty$, together with the asymptotic behaviors of $w(\cdot)$ described in Lemma 2.1, the fact that $v_{\varepsilon}^* \in Y_{\alpha}$, combined with Proposition 2.1, implies that the solutions satisfy the boundary condition in (1.6). Now, from Proposition 2.1 we obtain that

$$|v_{\varepsilon}^{*}(z)| \leq C \|v_{\varepsilon}^{*}\|_{Y_{\alpha}}(\ln^{+}|z|+1) \leq C \|\psi_{\varepsilon}\|_{U_{\alpha}}(\ln^{+}|z|+1).$$

This implies then

$$|v_{\varepsilon}^*(\varepsilon x)| \le C \|\psi_{\varepsilon}\|_{U_{\alpha}}(\ln^+ |\varepsilon x| + 1) \le C \|\psi_{\varepsilon}\|_{U_{\alpha}}(\ln^+ |x| + 1).$$
(2.14)

From the continuity of the function $\varepsilon \mapsto \psi_{\varepsilon}$ from $(0, \varepsilon_0)$ into U_{α} and the fact $\psi_0^* = 0$ we have

$$\|\psi_{\varepsilon}\|_{U_{\alpha}} \to 0 \qquad \text{as } \varepsilon \to 0.$$
 (2.15)

The proof of (1.14) follows from (2.15) combined with (2.14). This completes the proof of Theorem 1.1. \Box

3 Existence of Topological Vortices

Our aim in this section is to prove Theorem 1.2.

Proof of Theorem 1.2: We first establish that in order to have existence of solution $(u_1, \dots u_N)$ satisfying (1.4) and (1.15)-(1.16), it is necessary to have (1.17). Without loss of generality we may assume $M_1 \ge M_k$ for all $k = 1, \dots m$. Suppose that there exists $M_k < M_1$ for some $k \in \{1, \dots, m\}$. Then, from (1.4) we have

$$\Delta\left(u_k - u_1 - \sum_{j=1}^{M_k} \ln|z - z_{k,j}|^2 + \sum_{j=1}^{M_1} \ln|z - z_{l,j}|^2\right) = 0,$$

and

$$u_{k} = u_{1} + \ln\left(\frac{\prod_{j=1}^{M_{k}} |z - z_{k,j}|^{2}}{\prod_{j=1}^{M_{1}} |z - z_{l,j}|^{2}}\right) + h_{k}(z)$$
(3.1)

for some harmonic function $h_k(z)$. Since

$$u_k \to \ln \sigma_k, \quad u_1 \to \ln \sigma_1, \quad \ln \left(\frac{\prod_{j=1}^{M_k} |z - z_{k,j}|^2}{\prod_{j=1}^{M_1} |z - z_{l,j}|^2} \right) \to O((M_k - M_1) \ln |z|),$$

as $|z| \to \infty$, (3.1) implies $h_k \equiv C_k$ (constant), and provides an absurd relation. Hence, $M_1 = \cdots = M_m \equiv M$. Similarly, the relation (3.1) with $k = m + 1, \cdots N$ implies $M_k < M$ for all $k = m + 1, \cdots, N$, since for all $k = m + 1, \cdots N$, $u_k \to -\infty$, while $u_1 \to \ln \sigma_1$ as $|z| \to \infty$.

Then, choosing $C_k = \ln(\sigma_k/\sigma_1)$ for all $k = 1, \dots, m, (2.1)$ becomes

$$u_k = u_1 + \ln\left(\frac{\sigma_k}{\sigma_1} \prod_{j=1}^M \frac{|z - z_{k,j}|^2}{|z - z_{1,j}|^2}\right).$$
(3.2)

for $k = 1, \dots N$. Let us set

$$\eta_k(z) = \begin{cases} \sigma_k \prod_{j=1}^M \frac{|z - z_{k,j}|^2}{(\mu + |z - z_{1,j}|^2)} & \text{for } k \in \{1, \cdots, m\} \\ \frac{\prod_{j=1}^{M_k} |z - z_{k,j}|^2}{\prod_{j=1}^M (\mu + |z - z_{1,j}|^2)} & \text{for } k \in \{m + 1, \cdots, N\}, \end{cases}$$

where $\mu >$ is a sufficiently large parameter. We introduce new unknown v by

$$u_1 = v + \ln \eta_1. \tag{3.3}$$

Then, (3.2) combined with (3.3) implies the representation for u_k , $k = 1, \dots, N$ by

$$u_k = v + \ln \eta_k.$$

We introduce

$$g(z) = \sum_{j=1}^{M} \frac{4\mu}{(\mu + |z - z_{1,j}|^2)^2}$$

We note that

$$\Delta \ln \eta_1(z) = 4\pi \sum_{j=1}^M \delta(z - z_{1,j}) - g(z).$$
(3.4)

We also introduce the function u_0 defined by

$$\sum_{k=1}^{N} \eta_k = e^{u_0}.$$
(3.5)

Note that since $e^{u_0} \to \sum_{k=1}^m \sigma_k = 1$, we have $u_0 \to 0$ as $|z| \to \infty$.

Using (3.4) and (3.5), we can rewrite the equation for u_1 in (1.4) as follows

$$\Delta v = e^{v+u_0}(e^{v+u_0} - 1) + g,$$

which is the Euler-Lagrange equation of the functional

$$F(v) = \int_{\mathbb{R}^2} \left[\frac{1}{2} |\nabla v|^2 + \frac{1}{2} (e^{u+u_0} - 1)^2 + gv \right] dx.$$
(3.6)

After this step the arguments for the existence of solution by minimization of the functional F(v) by showing the coercivity and the weak lower semicontinuity in $H^1(\mathbb{R}^2)$ for sufficiently large μ , is exactly the same as in [15], [11] or [16], and we do not repeat them here. This finishes the proof of Theorem 1.2 \Box

4 Appendix

Here we prove Lemma 2.1 and Proposition 2.3. We begin with the following elementary integration lemma

Lemma 4.1 Let $m \ge k+1$, then we have

$$\int_0^\infty \frac{r^{k(2N+2)-3}}{(1+r^{2N+2})^m} dr = \frac{\pi \prod_{j=1}^{k-1} (Nj+j-1) \prod_{j=1}^{m-k} [Nj+j-1]}{2(m-1)!(N+1)^m \sin\left(\frac{\pi M_1}{M_1+1}\right)}.$$
 (4.1)

Proof:

$$\int_{0}^{\infty} \frac{r^{k(2N+2)-3}}{(1+r^{2N+2})^{m}} dr = \frac{1}{2N+2} \int_{0}^{\infty} \frac{t^{k-1-\frac{1}{N+1}}}{(1+t)^{m}} dt \quad (\text{Setting } t = r^{2N+2})$$
$$= -\frac{1}{2N+2} \int_{0}^{\infty} \frac{t^{k-1-\frac{1}{N+1}}}{(m-1)} \frac{d}{dt} \frac{1}{(1+t)^{m-1}} dt$$
$$= \frac{1}{(2N+2)} \frac{1}{(m-1)} \left(k-1-\frac{1}{N+1}\right) \int_{0}^{\infty} \frac{t^{k-2-\frac{1}{N+1}}}{(1+t)^{m-1}} dt = \cdots$$
$$= \frac{\left(k-1-\frac{1}{N+1}\right) \left(k-2-\frac{1}{N+1}\right) \cdots \left(1-\frac{1}{N+1}\right)}{2(N+1)(m-1)(m-2)\cdots(m-k+1)} \int_{0}^{\infty} \frac{t^{-\frac{1}{N+1}}}{(1+t)^{m-k+1}} dt.$$
(4.2)

Now we use the well-known formula from the Mellin transform (see e.g. [7])

$$\int_0^\infty \frac{t^{a-1}}{(1+t)^n} dt = \frac{\pi |(a-1)(a-2)\cdots(a-(n-1))|}{(n-1)!\sin(\pi a)}, \quad a \in (0,1)$$

in order to evaluate

$$\int_{0}^{\infty} \frac{t^{-\frac{1}{N+1}}}{(1+t)^{m-k+1}} dt = \int_{0}^{\infty} \frac{t^{a-1}}{(1+t)^{m-k+1}} dt = \frac{\pi |(a-1)(a-2)\cdots(a-m+k)|}{(m-k)!\sin(\pi a)},$$
where we set $a = \frac{N}{N+1}$. Substituting (4.3) into (4.2), we obtain (4.1). \Box
(4.3)

Proof of Lemma 2.1: Let us set $f(r) = \rho_1(r)$. Then, it is found in [1] that the ordinary differential equation(with respect to r), $\Delta w + \rho_1 w = f(r)$ has a solution $w(r) \in Y_{\alpha}$ given by

$$w(r) = \varphi_0(r) \left\{ \int_0^r \frac{\phi_f(s) - \phi_f(1)}{(1-s)^2} ds + \frac{\phi_f(1)r}{1-r} \right\}$$
(4.4)

with

$$\phi_f(r) := \left(\frac{1+r^{2M_1+2}}{1-r^{2M_1+2}}\right)^2 \frac{(1-r)^2}{r} \int_0^r \varphi_0(t) tf(t) dt,$$

where $\phi_f(1)$ and w(1) are defined as limits of $\phi_f(r)$ and w(r) as $r \to 1$. From the formula (4.4) we find that

$$w(r) = \varphi_0(r) \int_2^r \left(\frac{1+s^{2M_1+2}}{1-s^{2M_1+2}}\right)^2 \frac{I(s)}{s} ds + (\text{bounded function of } r) \quad (4.5)$$

as $r \to \infty$, where

$$I(s) = \int_0^s \varphi_0(t) t \rho_1(t) dt.$$

Since $\varphi_0(r) \to -1$ as $r \to \infty$, (1.12) follows if we show

$$I = I(\infty) = \int_0^\infty \varphi_0(r) r \rho_1(r) dr = C_0.$$

We evaluate the integral,

$$\begin{split} I &= \int_{0}^{\infty} \varphi_{0}(r) f(r) r dr = \int_{0}^{\infty} \varphi_{0}(r) \rho_{1}(r)^{2} r dr \\ &= 64(M_{1}+1)^{4} \int_{0}^{\infty} \frac{(1-r^{2M_{1}+2})r^{4M_{1}+1}}{(1+r^{2M_{1}+2})^{5}} dr \\ &= 64(M_{1}+1)^{4} \left[\int_{0}^{\infty} \frac{r^{4M_{1}+1}}{(1+r^{2M_{1}+2})^{5}} dr - \int_{0}^{\infty} \frac{r^{6M_{1}+3}}{(1+r^{2M_{1}+2})^{5}} dr \right] \\ &= 64(M_{1}+1)^{4} \left[\frac{\pi M_{1}^{2}(2M_{1}+1)(3M_{1}+2)}{2 \cdot 4!(M_{1}+1)^{5} \sin\left(\frac{\pi M_{1}}{M_{1}+1}\right)} - \frac{\pi M_{1}^{2}(2M_{1}+1)^{2}}{2 \cdot 4!(M_{1}+1)^{5} \sin\left(\frac{\pi M_{1}}{M_{1}+1}\right)} \right] \\ &= \frac{4\pi M_{1}^{2}(2M_{1}+1)^{6}}{15(M_{1}+1)^{5} \sin\left(\frac{\pi M_{1}}{M_{1}+1}\right)} = C_{0}, \end{split}$$

where we used (4.1) with (k, m) = (2, 5) and (3, 5) in the fourth line. This completes the proof of Lemma 2.1. \Box

Proof of Proposition 2.3: In order to transform the integral we use the formula

$$L\left[\frac{1}{16(1+r^{2M_1+2})^2}\right] = \frac{(M_1+1)^2 r^{4M_1+2}}{(1+r^{2M_1+2})^4},$$

which can be verified by an elementary computation. Using this, we have the following

$$\begin{split} I_{\pm} &= \int_{\mathbb{R}^2} (\rho_1 w - 2\rho_1^2) \varphi_{\pm}^2 dx \\ &= \int_0^{2\pi} \int_0^{\infty} (\rho_1 w - 2\rho_1^2) \frac{r^{2M_1+2}}{(1+r^{2M_1+2})^2} \left\{ \begin{array}{c} \cos^2(M_1+1)\theta \\ \sin^2(M_1+1)\theta \end{array} \right\} r dr d\theta \\ &= \pi \int_0^{\infty} \left[\frac{8(M_1+1)^2 r^{2M_1}}{(1+r^{2M_1+2})^2} w - 2\rho_1^2 \right] \frac{r^{2M_1+2}}{(1+r^{2M_1+2})^2} r dr \\ &= \pi \int_0^{\infty} \left[\frac{1}{2} L \left\{ \frac{1}{(1+r^{2M_1+2})^2} \right\} w - \frac{2\rho_1^2 r^{2M_1+2}}{(1+r^{2M_1+2})^2} \right] r dr \\ &= \pi \int_0^{\infty} \left[\frac{1}{2} L w \cdot \frac{1}{(1+r^{2M_1+2})^2} - \frac{2\rho_1^2 r^{2M_1+2}}{(1+r^{2M_1+2})^2} \right] r dr \\ &= \pi \int_0^{\infty} \left[\frac{\rho_1^2}{2(1+r^{2M_1+2})^2} - \frac{2\rho_1^2 r^{2M_1+2}}{(1+r^{2M_1+2})^2} \right] r dr \\ &= \pi \int_0^{\infty} \left[\frac{5\rho_1^2}{2(1+r^{2M_1+2})^2} - \frac{2\rho_1^2}{(1+r^{2M_1+2})^2} \right] r dr \end{split}$$

$$= 64\pi (M_1+1)^4 \int_0^\infty \left[\frac{5r^{4M_1+1}}{2(1+r^{2M_1+2})^6} - \frac{2r^{4M_1+1}}{(1+r^{2M_1+2})^5} \right] dr$$

= $64\pi (M_1+1)^4 \left[\frac{\pi M_1^2 (2M_1+1)(3M_1+2)(4M_1+3)}{4 \cdot 4!(M_1+1)^6 \sin\left(\frac{\pi M_1}{M_1+1}\right)} - \frac{\pi M_1^2 (2M_1+1)(3M_1+2)}{4!(M_1+1)^5 \sin\left(\frac{\pi M_1}{M_1+1}\right)} \right]$
= $-\frac{2\pi^2 M_1^2 (2M_1+1)(3M_1+2)}{3(M_1+1)^2 \sin\left(\frac{\pi M_1}{M_1+1}\right)} < 0,$

where we used (4.1) with (k, m) = (2, 6) and (2, 5) respectively in order to evaluate the integrals in the seventh line. This completes the proof of the proposition. \Box

Acknowledgements

This research is supported partially by the grant no. F01-2002-000-20014 from the KOSEF and by an Interdisciplinary Research Grant of the Seoul National University in 2003.

References

- D. Chae and O. Yu Imanuvilov, The existence of non-topological multivortex solutions in the relativistic self-dual Chern-Simons theory, Comm. Math. Phys. 215, (2000), pp. 119-142.
- H. Chan, C. C. Fu, and C. S. Lin, Non-topological multi-vortex solutions to the self-dual Chern-Simons-Higgs equation Comm. Math. Phys. 231 (2002), no. 2, pp. 189-221.
- [3] G. W. Gibbons, M. E. Ortiz, M. E., F. Ruiz Ruiz, T. M. Samols, Semilocal strings and monopoles, Nuclear Phys. B 385, no. 1-2, (1992), pp. 127-144.
- [4] J. Hong, Y. Kim, and P.Y. Pac, Phys. Rev. Lett., 64, (1990), pp. 2230-2233.
- [5] R. Jackiw and E. J. Weinberg, Phys. Rev. Lett., 64, (1990), pp. 2234-2237.
- [6] A. Khare, Semilocal self-dual Chern-Simons vrtices, Phys. Rev. D, 46, no. 6, (1992), pp. R2287-R2289.

- [7] S. Lang, *Complex Analysis*, 3rd ed. GTM series, Springer, Berlin, (1993).
- [8] M. Nolasco, Non-topological N-vortex condensates for the self-dual Chern-Simons theory, Comm. Pure Appl. Math. 56, (2003), no. 12, pp. 1752-1780.
- [9] M. Nolasco and G. Tarantello, Double vortex condensates in the Chern-Simons-Higgs theory, Calc. Var. P.D.E., 9, (1999), issue 1, pp. 31-94.
- [10] J. Spruck and Y. Yang, The existence of nontopological solitons in the self-dual Chern-Simons theory, Comm. Math. Phys. 149 (1992), no. 2, pp. 361-376.
- [11] J. Spruck and Y. Yang, Topological solutions in the self-dual Chern-Simons theory: existence and approximation, Ann. Inst. H. Poincaré -Anal. Nonlinéaire, 12, (1995), pp. 75-97.
- [12] G. Tarantello, Multiple condensate solutions for the Chern-Simons-Higgs Theory, J. Math. Phys., 37, (1996), pp. 3769-3796.
- [13] C. H. Taubes, Arbitrary N-vortex solutions to the first order Ginzburg-Landau equation, Comm. Math. Phys. 72, (1980), 277-292.
- [14] T. Vachaspati and A. Achúcarro, *Semilocal cosmic strings*, Phys. Rev. D (3), 44, no. 10, (1991), pp. 3067-3071.
- [15] R. Wang, The existence of Chern-Simons vortices, Comm. Math. Phys., 137, (1991), pp. 587-597.
- [16] Y. Yang, "Solitons in field theory and nonlinear analysis", Springer-Verlag, New York, (2001).
- [17] E. Zeidler, "Nonlinear functional analysis and its applications", Vol. 1, Springer-Verlag, New York, (1985).