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Abstract

We study a semilinear ellptic system modelling the physical sys-
tem strings and antistrings in cosmology under the boundary condi-
tion of the symmetric vacuum(the nontopological type). We construct
solutions with the representation having precise informations on the
asymptotic behaviors near infinity for arbitray location of strings and
antitrings satisfying 1 ≤ M − N < 1

4πG , where M and N are the
total string number and the total antistring number respectively, and
G is the gravitational constant. The asymptotic properties, in par-
ticular, are completely different to the solutions under the boundary
condition of the asymmetric vacuum(the topological type) constructed
previously by Y. Yang[19]. We also compute the total magnetic flux,
total energy and the total Gaussian curvature of our solutions.
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1 Introduction

We consider the following system for (v, η) in R2:

∆v =
2eη(ev − 1)

ev + 1
− 4π

N∑
j=1

δ(z − pj) + 4π
M∑

j=1

δ(z − qj), (1.1)

− 1

2a
∆η = ∆

[
ln(1 + ev)− 1

2
v

]
+ 2π

N∑
j=1

δ(z − pj) + 2π
M∑

j=1

δ(z − qj),

(1.2)

equipped with the boundary condition

ev → 0 and eη → 0 as |z| → ∞, (1.3)

where we denoted z = x1 + ix2 ∈ C = R2, and a = 8πG with G > 0,
the gravitational constant. The system (1.1)-(1.2) represent an equilibrium
configuration of cosmic strings and antistrings in cosmology. More precisely,
we could start from a lagrangian of the Hilbert-Einstein action coupled with
O(3) model(sigma model) as a matter part, which represents cosmic strings
in the universe(See e.g. [16].) Then, under the assumption of translational
symmetry in the time and one spatial direction, we obtain the Bogomol’nyi
type of equations saturating the global minimization of the static energy,
which after the standard reduction procedure[8] we obtain (1.1)-(1.2). There
are many literature on the related physical models on the cosmic strings(See
e.g.[8, 9, 16, 17] and references therein). With the Abelian Higgs model as the
matter part mathematically rigorous study of the static cosmic strings was
initiated in [7] for the radially symmetric case, and in [18, 21] in the general
multistring case. With the O(3) model as a matter part, as we are intersted
in this paper, we could have both strings and antistrings simultaneously. In
this case, Yang proved existence of general multistrings in [19, 20, 21]. All of
the previous mathematical studies are under the boundary condition of the
broken vacuum symmetry(topological boundary condition), namely ev → 1
and eη → 0 as |z| → ∞. In this paper, in the cosmic string-sntistring model
problem, we study the system under the boundary condition of the unbroken
vacuum symmetry(nontopological boundary condition), which is the prob-
lem 1.1-1.3. Our boundary condition of the unbroken vacuum symmetry
has similar feature to the nontopological boundary condition in the self-dual
Chern-Simons theories studied in R2 by [13, 3, 4, 5, 2], and in the periodic
domain by [14, 12, 11]. We use the method developed and refined in [3, 4, 5]
to construct solutions of the problem (1.1)-(1.3). We find that the qualititive
properties of our solution is completely different to those obtained by Yang
in [19, 20, 21]. We note that the study of the Abelian Higgs strings in the
broken vacuum symmetry is recently done in [6].
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Our main aim in this paper is to prove the following theorem.

Theorem 1.1 Suppose Q1 = {pj}N
j=1 and Q2 = {qj}M

j=1 are given in R2

allowing multiplicities, and Q1 ∩Q2 = ∅. Assume

1 ≤ M −N <
1

4πG
. (1.4)

Then, there exists a constant ε1 > 0 such that for any ε ∈ (0, ε1) there exists
a family of solutions to (P ), (u1, u2). Moreover, the solutions we constructed
have the following representations:

v(z) = ln ρI
ε,δ∗ε (z) + ε2w1(ε|z|) + ε2u∗1,ε(εz), (1.5)

η(z) = ln ρII
ε,δ∗ε (z) + ε2w2(ε|z|) + ε2u∗2,ε(εz) (1.6)

with

ρI
δ,ε(z) =

ε2M−2N+2
∏M

j=1 |z − qj|2∏N
j=1 |z − pj|2(1 + |εz + δ|2) 2

a

, (1.7)

ρII
δ,ε(z) =

4ε2

a(1 + |εz + δ|2)2
, δ = δ1 + iδ2 ∈ C, (1.8)

where and hereafter we denote

a = 8πG. (1.9)

In (1.5) and (1.6), the function ε 7→ δ∗ε is a continuous function in a neigh-
borhood of 0, and |δ∗ε | → 0 as ε → 0. The radial functions w1, w2 have the
following asymptotic properties.

w1(|z|) = −C1 ln |z|+ O(1) as |z| → ∞, (1.10)

w2(|z|) = −C2 ln |z|+ O(1) as |z| → ∞ (1.11)

with C1, C2 defined by

C1 =
16(a + 1)(M −N)![1− a(M −N)]

a2
∏2

k=1+N−M

(
2
a

+ k
) , (1.12)

C2 =
16(a + 1)(M −N)![1− a(M −N)]

a
∏2

k=1+N−M

(
2
a

+ k
) (= aC1). (1.13)

The functions u∗1,ε, u
∗
2,ε satisfy

sup
z∈R2

|u∗1,ε(εz)|+ |u∗2,ε(εz)|
ln(e + |z|) ≤ o(1) as ε → 0. (1.14)
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Given solution (v, η) of the system (1.1)-(1.2) we have the following formu-
lae for the flux density F12, energy densityH and the Gaussian curvature K of
the corresponding physical system of cosmic strings and antistrings(vortices
and the antivortices) on the conformally flat surface M2 = (R2, eηδjk)(See
Section 11.2 of [18]).

F12 = −eη(ev − 1)

ev + 1
(1.15)

eηH = ∆

[
ln(1 + ev)− 1

2
v

]
+ 2π

N∑
j=1

δ(z − pj) + 2π
M∑

j=1

δ(z − qj)

(1.16)

eηK = −1

2
∆η. (1.17)

Using these formula we evaluate the total magnetic flux, total energy and
the total curvature rather explicitly.

Theorem 1.2 Let (v, η) be solution constructed in Theorem 1.1. Then, we
have the following evaluations of the total magnetic flux, total energy and the
total curvature of M2 = (R2, eηδjk) .

∫

R2

F12dx = 4π

[
M −N − 1

a

]
+ πC1ε

2 + o(ε2), (1.18)

∫

R2

Heηdx =
π

a

[
4 + C2ε

2 + o(ε2)
]
, (1.19)

∫

R2

Keηdx = π
[
4 + C2ε

2 + o(ε2)
]

(1.20)

as ε → 0, where C1, C2 are the constants in (1.10), (1.11) respectively.
Moreover, for all sufficiently small positive ε, the conformally flat 2 surface
M2 is complete(incomplete) if and only if a(M −N) < (>)1.

2 Proof of the Main Theorems

We first transform our system to more convenient form for our analysis.
Using (1.1) we compute,

∆ ln(1 + ev) =
ev∆v

ev + 1
+
|∇v|2ev

ev + 1
− |∇v|2e2v

(ev + 1)2

=
2eη+v(ev − 1)

(ev + 1)2
+
|∇v|2ev

ev + 1
− |∇v|2e2v

(ev + 1)2
− 4π

M∑
j=1

δ(z − pj)
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=
2eη+v(ev − 1)

(ev + 1)2
+
|∇v|2ev

(ev + 1)2
− 4π

M∑
j=1

δ(z − pj)

=
2eη+v(ev − 1)

(ev + 1)2
+

∆ev − ev∆v

(ev + 1)2
− 4π

M∑
j=1

δ(z − pj). (2.1)

Substituting (2.1) into (1.2), and then eliminating 1
2
∆v inside [·] using (1.1),

we obtain the following system equivalent to (1.1)-(1.2):

∆v =
2eη(ev − 1)

ev + 1
− 4π

N∑
j=1

δ(z − pj) + 4π
M∑

j=1

δ(z − qj), (2.2)

∆η = −2aeη(ev − 1)2

(ev + 1)2
− 2a∆ev

(ev + 1)2
+

2aev∆v

(ev + 1)2
. (2.3)

We consider the following ‘principal part’ of the system, (2.2)-(2.3).

∆v0 = −2eη0 − 4π
N∑

j=1

δ(z − pj) + 4π
M∑

j=1

δ(z − qj), (2.4)

∆η0 = −2aeη0 . (2.5)

As a family of solution (2.5) we have

η0(z) = ln ρII
δ,ε(z) (2.6)

with ρII
δ,ε(z) defined in (1.8). In order to solve (2.4) we rewrite it as

∆

(
av0 + a

N∑
j=1

ln |z − pj|2 − a

M∑
j=1

ln c0|z − qj|2
)

= −2aeη0 , (2.7)

where c0 is an arbitrary positive constant. Comparing (2.7) with (2.5), we
find that

av0 + a

N∑
j=1

ln |z − pj|2 − a

M∑
j=1

ln c0|z − qj|2 = η0 + h(z) (2.8)

for a harmonic function, h(z). We choose h(z) ≡ 0. Then, substituting η0 in
(2.6) into (2.8), and solving it for v0, and choosing the constant c0 in as

c0 = ε2M−2N+2
( a

4ε2

) 1
a
,

we find that
v0(z) = ln ρI

δ,ε(z), (2.9)
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with ρI
δ,ε(z) defined in (1.7). We set

gI
δ,ε(z) =

1

ε2
ρI

δ,ε

(z

ε

)
, gII

δ,ε(z) =
1

ε2
ρII

δ,ε

(z

ε

)
,

and define ρ1(r), ρ2)r) by

ρ1(r) =
r2M−2N

(1 + r2)
2
a

= lim
ε+|δ|→0

gI
δ,ε(z), ρ2(r) =

4

a(1 + r2)2
= lim

ε+|δ|→0
gII

δ,ε(z).

We make transforms from (v, η) to (u1, u2) as follows

v(z) = ln ρI
δ,ε(z) + ε2w1(εz) + ε2u1(εz)

η(z) = ln ρII
δ,ε(z) + ε2w2(εz) + ε2u2(εz) (2.10)

where w1, w2 are the radial functions, wj(z) = wj(|z|), j = 1, 2 to be de-
termined below. Then, (2.2)-(2.3) can be transformed into the functional
equation, P = (P1, P2) = 0, where

P1(u1, u2, δ, ε) = ∆u1

−2gI
δ,ε(z)gII

δ,ε(z)eε2(u1+u2+w1+w2) − 2gII
δ,ε(z)

ε2 eε2(u2+w2)

ε2gI
δ,ε(z)eε2(u1+w1) + 1

− 2gII
δ,ε(z)

ε2
+ ∆w1,

P2(u1, u2, δ, ε) = ∆u2

+

2a
ε2 gII

δ,ε(z)eε2(u2+w2)
[
ε2gI

δ,ε(z)eε2(u1+w1) − 1
]2

[
ε2gI

δ,ε(z)eε2(u1+w1) + 1
]2 − 2agII

δ,ε(z)

ε2

+
2a∆

[
gI

δ,ε(z)eε2(u1+w1)
]

[
ε2gI

δ,ε(z)eε2(u1+w1) + 1
]2 +

4agI
δ,ε(z)gII

δ,ε(z)eε2(u1+w1)

[
ε2gI

δ,ε(z)eε2(u1+w1) + 1
]2

−2aε2gI
δ,ε(z)eε2(u1+w1)∆(u1 + w1)[

ε2gI
δ,ε(z)eε2(u1+w1) + 1

]2 + ∆w2.

Now we introduce the functions spaces used in [3]. Let us fix α ∈ (0, 1
2
)

throughout this paper. Following [1], we introduce the Banach spaces Xα

and Yα as

Xα = {u ∈ L2
loc(R2) |

∫

R2

(1 + |x|2+α)|u(x)|2dx < ∞}

equipped with the norm ‖u‖2
Xα

=
∫
R2(1 + |x|2+α)|u(x)|2dx, and

Yα = {u ∈ W 2,2
loc (R2) | ‖∆u‖2

Xα
+

∥∥∥ u(x)

1 + |x|1+α
2

∥∥∥
2

L2(R2)
< ∞}

equipped with the norm ‖u‖2
Yα

= ‖∆u‖2
Xα

+
∥∥ u(x)

1+|x|1+ α
2

∥∥2

L2(R2)
. We recall the

following propositions proved in [3].
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Proposition 2.1 Let Yα be the function space introduced above. Then we
have the followings.

(i) If v ∈ Yα is a harmonic function, then v ≡ constant.

(ii) There exists a constant C1 > 0 such that for all v ∈ Yα

|v(x)| ≤ C1‖v‖Yα ln(e + |x|), ∀x ∈ R2.

Proposition 2.2 Let α ∈ (0, 1
2
), and let us set

L = ∆ + ρ : Yα → Xα,

where ρ = 8
(1+r2)2

. We have

KerL = Span {ϕ+, ϕ−, ϕ0} , (2.11)

where we denoted

ϕ+ =
r

1 + r2
cos θ, ϕ− =

r

1 + r2
sin θ, ϕ0 =

1− r2

1 + r2
.

Moreover, we have

ImL = {f ∈ Xα|
∫

R2

fϕ± = 0}. (2.12)

We can check easily that P is a well defined continuous mapping from Bε0 ⊂
(Yα)2 × C × R+ into (Xα)2, where Bε0 = {‖u1‖Yα + ‖u2‖Yα + |δ| ≤ ε < ε0}
for sufficiently small ε0. In order to have gI

δ,ε(z) → 0 as |z| → 0 we impose

2a(M −N) < 1,

which is equivalent to (1.4).
We now extend continuously P (0, 0, 0, ε) to ε = 0 by imposing the condi-

tion that limε→0 P (0, 0, 0, ε) = 0. In order to compute the limit limε→0 P (0, 0, 0, ε)
we note the elementary facts,

1

1 + x
− 1 = −x + O(x2),

1

(1 + x)2
− 1 = −2x + O(x2) (2.13)

as x → 0. Using this we compute

lim
ε→0

P1(0, 0, 0, ε) = −4ρ1ρ2 + 2ρ2w2 + ∆w1,

and
lim
ε→0

P2(0, 0, 0, ε) = −4aρ1ρ2 + 2aρ2w2 + 2a∆ρ1 + ∆w2.

Hence, the condition limε→0 P (0, 0, 0, ε) = 0 implies the following linear sys-
tem for w1(r), w2(r).

∆w1 + 2ρ2w2 − 4ρ1ρ2 = 0, (2.14)

∆w2 + 2aρ2w2 − 4aρ1ρ2 + 2a∆ρ1 = 0. (2.15)
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We establish the following lemma about asymptotic behaviors of solutions
w1, w2 ∈ Yα.

Lemma 2.1 There exist radial solutions w1(|z)), w2(|z|) of (2.14)-(2.15), be-
longing to Yα, satisfying the estimate (1.10) and the asymptotic formula in
(1.11) respectively.

Proof: From (2.14)×a−(2.15) we obtain

∆(aw1 − w2 − 2aρ1) = 0.

We seek w1, w2 with aw1 − w2 − 2aρ1 ∈ Yα. Then, it follows that aw1 −
w2 − aρ1 =constant by Proposition 2.1. We choose this constant= 0. Then,
ρ2w2 = aρ2w1− 2aρ1ρ2. Substituting this into (2.14) we obtain the following
reduced system for w1, w2.

∆w1 + 2aρ2w1 = 4(a + 1)ρ1ρ2, (2.16)

w2 = aw1 − 2aρ1. (2.17)

Let us set f(r) = 4(a + 1)ρ1ρ2. Then, it is found in [1, 3] that the ordinary
differential equation(with respect to r), (2.16) has a solution w1(r) ∈ Yα

given by

w1(r) = ϕ0(r)

{∫ r

0

φf (s)− φf (1)

(1− s)2
ds +

φf (1)r

1− r

}
(2.18)

with

φf (r) :=

(
1 + r2

1− r2

)2
(1− r)2

r

∫ r

0

ϕ0(t)tf(t)dt,

where φf (1) and w1(1) are defined as limits of φf (r) and w1(r) as r → 1.
From the formula (2.18) we find that

w1(r) = ϕ0(r)

∫ r

2

(
1 + s2

1− s2

)2
I(s)

s
ds + (bounded function of r) (2.19)

as r →∞, where

I(s) =

∫ s

0

ϕ0(r)f(r)rdr.

Since ϕ0(r) → −1 as r → ∞, (1.10) follows if we show I = I(∞) = C1.
Indeed, substituting r2 = t in the integrand of I, we evaluate the integral as
follows.

I = 4(a + 1)

∫ ∞

0

ϕ0(r)ρ1(r)ρ2(r)rdr

=
16(a + 1)

a

∫ ∞

0

(1− r2)r2M−2N

(1 + r2)3+ 2
a

rdr

=
8(a + 1)

a

∫ ∞

0

(1− t)tM−N

(1 + t)3+ 2
a

dt

8



=
8(a + 1)

a

[∫ ∞

0

tM−N

(1 + t)3+ 2
a

dt−
∫ ∞

0

tM−N+1

(1 + t)3+ 2
a

dt

]

=
8(a + 1)

a

[
(M −N)!∏2

k=2+N−M

(
2
a

+ k
) − (M −N + 1)!∏2

k=1+N−M

(
2
a

+ k
)
]

=
8(a + 1)(M −N)!

a
∏2

k=1+N−M

(
2
a

+ k
)

[
2

a
+ 1 + N −M − (M −N + 1)

]

=
16(a + 1)(M −N)![1− a(M −N)]

a2
∏2

k=1+N−M

(
2
a

+ k
) = C1. (2.20)

This completes the proof of (1.10). The proof follows immediately from (1.10)
combined with (2.17). This completes the proof of Lemma 2.1. ¤

Now we compute the linearized operator of P . By direct computation we
have

lim
ε→0

∂gI
δ,ε(z)

∂δ1

∣∣∣∣∣
δ=0

= −4

a
ρ1ϕ+, lim

ε→0

∂gI
δ,ε(z)

∂δ2

∣∣∣∣∣
δ=0

= −4

a
ρ1ϕ−,

lim
ε→0

∂gII
δ,ε(z)

∂δ1

∣∣∣∣∣
δ=0

= −4ρ2ϕ+, lim
ε→0

∂gII
δ,ε(z)

∂δ2

∣∣∣∣∣
δ=0

= −4ρ2ϕ−.

Let us set P ′
u1,u2,δ(0, 0, 0, 0) = A. Then, using the above preliminary compu-

tations, we obtain

A1[v1, v2, β] = ∆v1 + 2ρ2v2

+8

[
2(1 +

1

a
)ρ1ρ2 − ρ2w2

]
(ϕ+β1 + ϕ−β2),

and

A2[v1, v2, β] = ∆v2 + 2aρ2v2

+8 [2(1 + a)ρ1ρ2 − aρ2w2] (ϕ+β1 + ϕ−β2)

−8∆[ρ1(ϕ+β1 + ϕ−β2)].

For the linearized operator A[·] we will establish the following key lemma.

Lemma 2.2 The operator A : Y 2
α × R2 → X2

α defined above is onto. More-
over, kernel of A is given by

KerA = Span{(1, 0); (
ϕ±
a

, ϕ±); (
ϕ0

a
, ϕ0)} × {(0, 0)}. (2.21)

Thus, if we decompose Y 2
α ×R2 = Uα⊕KerA, where we set Uα = (KerA)⊥,

then A is an isomorphism from Uα onto X2
α.
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In order to prove the above lemma we need the following:

Proposition 2.3 Let w2 ∈ Yα solve (2.14)-(2.15), then

I± =

∫

R2

[2(1 + a)ρ1ρ2 − aρ2w2] ϕ
2
+dx

−
∫

R2

∆(ρ1ϕ+)ϕ±dx 6= 0. (2.22)

Proof: Integrating by part, we obtain

I± =

∫

R2

{
[2(1 + a)ρ1ρ2 − aw2ρ2]ϕ

2
± − ρ1ϕ±∆ϕ±

}
dx

=

∫

R2

[(4a + 2)ρ1ρ2 − aw2ρ2]ϕ
2
±dx, (2.23)

where we used (2.21 ∆ϕ± = −2aρ2ϕ±. (Note that L = ∆ + 2aρ2.) Below we
list useful formulas, which can be checked by elementary computations.

ϕ2
±ρ2 =

1

16
L2ρ2

{
cos2 θ
sin2 θ

}
, (2.24)

ϕ2
± =

1

4
ar2ρ2

{
cos2 θ
sin2 θ

}
, (2.25)

∆ρ2 = 2a(2r2 − 1)ρ2
2, (2.26)

Also, from (2.15), we have

Lw2 = 4aρ1ρ2 − 2a∆ρ1. (2.27)

Using (2.24)-(2.27), and integrating by parts, we transform the integral suc-
cessively as follows.

I± =

∫

R2

(4a + 2)ρ1ρ2ϕ
2
±dx− a

16

∫ ∞

0

∫ 2π

0

w2(L2ρ2)

{
cos2 θ
sin2 θ

}
dθrdr

=

∫ ∞

0

∫ 2π

0

{
a(4a + 2)

4
r2ρ1ρ

2
2 −

a

16
(Lw2)ρ2

}{
cos2 θ
sin2 θ

}
dθrdr

= π

∫ ∞

0

{
a(4a + 2)

4
r2ρ1ρ

2
2 −

a

16
(4aρ1ρ2 − 2a∆ρ1)ρ2

}
rdr

= π

∫ ∞

0

{
a(4a + 2)

4
r2ρ1ρ

2
2 −

a2

4
ρ1ρ

2
2 +

a2

8
ρ1∆ρ2

}
rdr

= π

∫ ∞

0

{
a(4a + 2)

4
r2ρ1ρ

2
2 −

a2

4
ρ1ρ

2
2 +

a3

4
(2r2 − 1)ρ1ρ

2
2

}
rdr

= π

∫ ∞

0

{
a(4a + 2)

4
r2 − a2

4
+

a3r2

2
− a3

4

}
ρ1ρ

2
2rdr
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=
a(a + 1)π

4

∫ ∞

0

[(2a + 2)r2 − a]ρ1ρ
2
2rdr

=
4(a + 1)π

a

∫ ∞

0

[(2a + 2)r2 − a]r2M−2N+1

(1 + r2)
2
a
+4

dr (Setting r2 = t)

=
2(a + 1)π

a

∫ ∞

0

[
(2a + 2)tM−N+1

(1 + t)
2
a
+4

− atM−N

(1 + t)
2
a
+4

]
dt

=
2(a + 1)π

a

[
(2a + 2)(M −N + 1)!∏3

k=2+N−M

(
2
a

+ k
) − a(M −N)!∏3

k=3+N−M

(
2
a

+ k
)
]

=
2(a + 1)π(M −N)!

a
∏3

k=2+N−M

(
2
a

+ k
)

[
(2a + 2)(M −N + 1)− a

(
2

a
+ 2 + N −M

)]

=
2(a + 1)(3a + 2)π(M −N)! · (M −N)

a
∏3

k=2+N−M

(
2
a

+ k
) > 0. (2.28)

This completes the proof of Proposition 2.3. ¤.

We are now ready to prove Lemma 3.1.

Proof of Lemma 2.2: Given (f1, f2) ∈ X2
α, we want first to show that there

exists (v, η) ∈ Y 2
α , β = (β1, β2) ∈ R2 such that

A(v1, v2, β) = (f1, f2), (2.29)

which can be rewritten as

∆v1 + 2ρ2v2

+8

[
2(1 +

1

a
)ρ1ρ2 − ρ2w2

]
(ϕ+β1 + ϕ−β2) = f1, (2.30)

and

∆v2 + 2aρ2v2 + 8 [2(1 + a)ρ1ρ2 − aρ2w2] (ϕ+β1 + ϕ−β2)

−8∆[ρ1(ϕ+β1 + ϕ−β2)] = f2. (2.31)

Let us set

β1 =
1

8I+

∫

R2

f2ϕ+dx, β2 =
1

8I−

∫

R2

f2ϕ−dx, (2.32)

where I± > 0 is defined in (2.22). We introduce f̃ by

f̃2 = f2 − β1ϕ+ − β2ϕ−. (2.33)

Using the fact
∫ 2π

0
ϕ+ϕ−dθ = 0, we find easily

∫

R2

f̃2ϕ±dx = 0. (2.34)
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Hence, by (2.12) there exists v2 ∈ Yα such that ∆v2 + 2aρ2v2 = f̃2. Thus we
have found (v2, β1, β2) ∈ Yα × R2 satisfying (2.31). Given such (v2, β1, β2),
in order to construct v1 ∈ Yα satisfying (2.30), we consider the following
equation, obtained by (2.30)× a− (2.31),

∆(av1 − v2 + 8ρ1ϕ+β1 + 8ρ1ϕ−β2) = af1 − f2. (2.35)

Obviously, for any harmonic function µ(x) the function

v1(x) =
1

2πa

∫

R2

ln(|x− y|)[af1 − f2](y)dy

+
1

a
(v2 − 8ρ1ϕ+β1 − 8ρ1ϕ−β2) + µ(x) (2.36)

satisfies (2.30). The requirement v1 ∈ Yα implies µ(x) ≡constant, thanks to
Proposition 2.1(i). We have just finished the proof that A : Y 2

α × R2 → X2
α

is onto.
Now it is easy to check that the restricted operator(denoted by the same
symbol), A : Uα → X2

α, where Uα is the space introduced in Lemma 2.2 is
one to one. This completes the proof of the lemma.¤

We are now ready to prove our main theorem.
Proof of Theorem 1.1: Lemma 2.2 shows that P ′

(v,ξ,β)(0, 0, 0, 0) : Uα →
Xα×Xα is an isomorphism for α ∈ (0, 1

2
). Then, the standard implicit func-

tion theorem(See e.g. [22]), applied to the functional P : Uα × (−ε0, ε0) →
Xα ×Xα, implies that there exists a constant ε1 ∈ (0, ε0) and a continuous
function ε 7→ ψ∗ε := (v∗1,ε, v

∗
2,ε, δ

∗
ε) from (0, ε1) into a neighborhood of 0 in Uα

such that
P (u∗1,ε, u

∗
2,ε, δ

∗
ε , ε) = (0, 0), for all ε ∈ (0, ε1).

This completes the proof of Theorem 1.1. The representation of solutions
u1, u2, and the explicit form of ρI

ε,δ∗ε
(z), ρII

ε,δ∗ε
(z), , together with the asymp-

totic behaviors of w1, w2 described in Lemma 2.1, the fact that u∗1,ε, u
∗
2,ε ∈ Yα,

combined with Proposition 2.1, implies that the solutions satisfy the bound-
ary condition in (P ). Now, from Proposition 2.1 we obtain that for each
j = 1, 2,

|u∗j,ε(x)| ≤ C‖u∗j,ε‖Yα(ln+ |x|+ 1) ≤ C‖ψε‖Uα(ln+ |x|+ 1). (2.37)

This implies then

|u∗j,ε(εx)| ≤ C‖ψε‖Uα(ln+ |εx|+ 1) ≤ C‖ψε‖Uα(ln+ |x|+ 1).

From the continuity of the function ε 7→ ψε from (0, ε0) into Uα and the fact
ψ∗0 = 0 we have

‖ψε‖Uα → 0 as ε → 0. (2.38)

12



The proof of (1.11) follows from (2.37) combined with (2.38). This completes
the proof of Theorem 1.1¤

Proof of Theorem 1.2: Combining (1.1) and (1.15), using the Gauss the-
orem, we deduce

∫

R2

F12dx = −1

2
lim

R→∞

∮

SR

∂v

∂r
ds + 2π(M −N), (2.39)

where we set SR = {x ∈ R2| |x| = R}. For our solution, v(x) = vε(x) given
by (2.24), we compute
∮

SR

∂vε

∂r
ds =

∮

SR

∂

∂r
ln ρI

ε,δ∗ε ds + ε2

∮

SR

∂w1(ε|z|)
∂r

ds + ε2

∮

SR

∂u∗1,ε(εx)

∂r
ds

= I1 + ε2I2 + ε2I3. (2.40)

Following the similar procedure as in [3]( pp. 135-138) we easily compute

I1 = −4π

(
M −N − 2

a

)
+ O

(
1

R

)
, (2.41)

and using (2.16)

I2 = −8π(a + 1)

∫ ∞

0

ϕ0tρ1ρ2dt + O

(
1

R

)

= −2πC1 (2.42)

as R → ∞, where we used the result of the computation in the proof of
Lemma 2.1, and finally

sup
R>0

|I3| ≤
∣∣∣∣
∫

R2

∆u∗1,εdx

∣∣∣∣

≤
(∫

R2

|∆u∗1,ε|2(1 + |x|2+α)dx

) 1
2
(∫

R2

dx

1 + |x|2+α

) 1
2

≤ C‖u∗1,ε‖Yα ≤ C‖ψ∗ε‖Uα → 0 (2.43)

as ε → 0 due to the continuity of ε 7→ ψ∗ε in Uα on (−ε1, ε1) as in the
proof of Theorem 1.1. Combining (2.41)-(2.43) with (2.40)) we obtain (1.18).
Comparing (1.2) with (1.16), and following similar argument we compute

∫

R2

Heηdx = − 1

2a

∫

R2

∆ηdx = − 1

2a
lim

R→∞

∮

SR

∂η

∂r
ds

= − 1

2a
lim

R→∞

∮

SR

∂

∂r
ln ρII

ε,α∗εds

− ε2

2a
lim

R→∞

∮

SR

∂w2(ε|z|)
∂r

ds− ε2

2a

∫

R2

∆u∗2,ε(εx)dx

= J1 + ε2J2 + ε2J3. (2.44)
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Similarly to the case of the flux above we easily compute

J1 =
4π

a
, (2.45)

J2 =
πC2

a
. (2.46)

Similarly to I3 above we have

|J3| ≤ C‖u∗2,ε‖Yα ≤ C‖ψ∗ε‖Uα → 0 (2.47)

as ε → 0. We thus obtain (1.19). In order to prove (1.20) we just observe

Keη = −1

2
∆η = aHeη,

and use the result (1.19). In order to obtain the completeness criterion of
the metric gjk = eηδjk in R2 we recall the result in Section 10.5 of [21] that
(R2, eηδjk) is complete if and only if

∫

R2

e
1
2
ηdx = ∞.

According to the representation formula (1.6), this, in turn, is equivalent to

∫ ∞

0

(1 + r)−1− 1
2
C2ε2+o(ε2)dr = ∞.

We note, however, from (1.13) that C2 > 0(< 0) if a(M −N) < (>)1. This
completes the proof of Theorem 1.2.¤
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