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Abstract. We analyze entropy solutions for a class of Lévy mixed hyperbolic-

parabolic equations containing a non-local (or fractional) diffusion operator

originating from a pure jump Lévy process. For these solutions we establish
uniqueness (L1 contraction property) and continuous dependence results.
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1. Introduction

The subject of this paper is uniqueness and stability results for properly defined
entropy solutions of mixed hyperbolic-parabolic quasilinear equations appended
with a nonlocal (fractional) diffusion operator. These equations take the form

(1.1) ∂tu+ divf(u) = div(a(u)∇u) + L[u],

where u = u(t, x) is the unknown, (t, x) ∈ QT := (0, T ) × Rd, d ≥ 1, and T > 0
is a fixed final time. The operator L is the generator of a symmetric positivity
preserving pure jump Lévy semigroup etL on L1(Rd).

Equation (1.1) is subject to initial data

(1.2) u(0, x) = u0(x) ∈ (L1 ∩ L∞)(Rd).

In (1.1),

(1.3) f = (f1, . . . , fd) ∈W 1,∞(R;Rd)

is a given vector-valued flux function, a = (aij) ≥ 0 is a given symmetric matrix-
valued diffusion function of the form

(1.4) a = σa(σa)tr, σa ∈ Rd×K , 1 ≤ K ≤ d.
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More precisely, the components of a are aij =
∑K
k=1 σ

a
ikσ

a
jk for i, j = 1, . . . , d. We

assume that the matrix-valued function σa = (σaik) : R→ Rd×K satisfies

(1.5) σa ∈W 1,∞(R;Rd×K).

Observe that we do not assume the matrix a(·) to be strictly positive definite, so the
operator div(a(u)∇u) may be strongly degenerate, and hence the phrase “mixed
hyperbolic-parabolic” is justified.

In terms of its singular integral representation, the nonlocal operator L in (1.1)
takes the form

(1.6) L[u](t, x) =

∫
Rd\{0}

[
u(t, x+ z)− u(t, x)− z · ∇u1|z|<1

]
π(dz),

where the singular Lévy measure π(dz) is a positive, σ-finite Borel measure on
Rd \ {0} satisfying π({0}) = 0, π(d(−z)) = −π(dz), and

(1.7)

∫
Rd\{0}

(
|z|2 1|z|<1 + |z|1|z|≥1

)
π(dz) <∞,

where we note that z can be replaced by a certain regular jump function j(z) easily
throughout the analysis. A typical example is provided by taking

π(z) =
1

|z|d+α
1|z|<1 dz, α ∈ (0, 2).

This example corresponds to the fractional Laplacian ∆α := −(−∆)
α
2 on Rd, which

can also be defined in terms of the Fourier transform as

∆̂αv(ω) = |ω|α v̂(ω), ω ∈ Rd.
This definition is employed in [25] to prove (1.6) in this case.

Nonlocal operators like ∆α are examples of a pseudodifferential operator P with

a symbol a(ω) ≥ 0 such that P̂v(ω) = a(ω)v̂(ω). The function e−ta(ω) is positive
definite, and thus, by the Lévy-Khintchine formula, it can be represented as

a(ω) = ib · ω + q(ω) +

∫
Rd\{0}

(
1− e−iz·ω − iz · ω 1|z|<1(z)

)
π(dz),

where b ∈ Rd represents the drift term, q(ω) =
∑d
i,j=1 qijωiωj is a positive definite

quadratic function representing the pure diffusion part (q(ω) = |ω|2 gives raise to
the usual Laplacian −∆), and the Lévy measure π(dz) accounts for the jump (non-
local) part. In our setting of L, cf. (1.6), we assume b ≡ 0 and q ≡ 0, i.e, we are
dealing with a pure jump operator. The key point is that any pseudodifferential
operator P is the generator of a Lévy process which is completely characterized
in terms of the triplet (b, q, π(dz)). For more details about the Lévy-Khintchine
formula and Lévy processes in general, we refer to [11, 28, 29, 30, 43].

Integro-partial differential equations, also known as nonlocal, fractional or Lévy
partial differential equations, appear frequently in many different areas of research
and find many applications in engineering and finance, including nonlinear acous-
tics, statistical mechanics, biology, fluid flow, pricing of financial instruments, and
portfolio optimization. Many authors have recently contributed to advancing the
mathematical theory for quasilinear and fully nonlinear partial differential equations
that are supplemented with a fractional diffusion operator arising as the generator
of a Lévy semigroup, addressing questions like existence, uniqueness, regularity,
formation of singularities, and asymptotic behavior of solutions.

For results with reference to fully nonlinear equations, such as the Hamilton-
Jacobi-Bellman equation, and the (in this context relevant) theory of viscosity
solutions, we refer to [2, 4, 5, 6, 7, 16, 17, 18, 27, 31, 32, 42, 45, 44, 46, 47, 48], see
also [9, 10, 23] for some concrete applications to finance.
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More recently, a number of authors [1, 3, 12, 13, 14, 15, 25, 33] have studied
questions regarding existence, uniqueness, regularity, and temporal asymptotics for
quasilinear equations, such as the fractal Burgers equation

(1.8) ∂tu+ ∂x(u2/2) = −(−∂2
xx)

α
2 u,

and more generally multi-dimensional fractional conservation laws

(1.9) ∂tu+ divf(u) = ∆αu,

where the parameter α is assumed lie in the interval (0, 2). Of course, the excluded
case α = 2 corresponds to the already fully understood viscous conservation law
∂tu+ divf(u) = ∆u, solutions of which are always smooth in t > 0. Regarding the
less studied case α ∈ [1, 2), it was recently proved in [24, 37] that solutions of the
fractional Burgers equation (1.8) are also smooth in t > 0. In the case α < 1 for
the fractional conservation law (1.9) the order of the diffusion part is lower than
the first order hyperbolic part, so we do not expect any regularizing effect to take
place. Indeed, for the fractional Burgers equation (1.8) with α < 1 it is proved in
[3, 37] that solutions can develop discontinuities in finite time. Consequently, one
should employ a notion of entropy solutions for fractional conservation laws (1.9),
i.e., weak solutions satisfying an additional entropy condition, to ensure the global-
in-time well-posedness. This is well-known for conservation laws ∂tu+divf(u) = 0,
cf. Kruz̆kov [38], and the well-posedness theory of Kruz̆kov was recently extended
to fractional conservation laws in [1].

In recent years the theory of Kruz̆kov [38] has been extended to quasilinear mixed
hyperbolic-parabolic equations of the form

(1.10) ∂tu+ divf(u) = div(a(u)∇u),

where f and a satisfy (1.3) and (1.4)-(1.5), respectively. Since the diffusion matrix
a(u) is not assumed to be strictly positive definite, (1.10) is strongly degenerate and
will in general posses discontinuous solutions. In the isotropic case (with a(·) being
a scalar function) the first general uniqueness result is due to Carrillo [19], who
developed an original extension of Kruz̆kov’s method of doubling variables to prove
his result, cf. [34, 35, 39, 40] for some additional applications of his techniques. The
anisotropic case (a(·) being a matrix-valued function) was first treated by Chen and
Perthame [22], who developed a kinetic formulation and established the uniqueness
result using regularization by convolution. An alternative proof of the result of
Chen and Perthame, adapting the device of doubling variables, was developed in
[8], cf. also [21, 20, 41] some other papers dealing with the anisotropic case.

The main purpose of this paper is to extend the uniqueness and “continuous
dependence on the nonlinearities” results of [8, 21, 20, 41] to fractional degenerate
parabolic equations of the form (1.1). We introduce the notion of entropy solutions
and state the main results in Section 2 . Sections 3 (existence), 4 (uniqueness), and
5 (continuous dependence on the nonlinearities and the Lévy measure) are devoted
to the proofs of the main results.

2. Notion of solution and main results

For i = 1, . . . , d and k = 1, . . . ,K, define

ζaik(z) :=

∫ z

0

σaik(ξ) dξ, ζa,ψik (z) =

∫ z

0

ψ(ξ)σaik(ξ) dξ, z ∈ R,

for any ψ ∈ C(R). Given any convex C2 entropy function η : R→ R, we define the
corresponding entropy fluxes q = (qi) : R→ Rd and r = (rij) : R→ Rd×d by

q′(z) = η′(z)f ′(z), r′(z) = η′(z)a(z).

We refer to (η, q, r) as an entropy-entropy flux triple.
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We now introduce the entropy formulation of (1.1)-(1.2).

Definition 2.1. An entropy solution of the initial value problem (1.1)-(1.2) is a
measurable function u : QT → R satisfying the following conditions:

(D.1) u ∈ L∞(QT ), u ∈ L∞(0, T ;L1(Rd)),

(2.1)

d∑
i=1

∂xiζ
a
ik(u) ∈ L2(QT ), k = 1, . . . ,K,

and

(2.2)

∫∫
QT

∫
Rd\{0}

(u(t, x+ z)− u(t, x))
2
π(dz) dx dt < +∞.

(D.2) For k = 1, . . . ,K,

(2.3)

d∑
i=1

∂xiζ
a,ψ
ik (u) = ψ(u)

d∑
i=1

∂xiζ
a
ik(u), a.e. in QT and in L2(QT ),

for any ψ ∈ C(R).
(D.3) For any entropy-entropy flux triple (η, q, r),∫∫

QT

(
η(u)∂tϕ+

d∑
i=1

qi(u)∂xiϕ+

d∑
i,j=1

rij(u)∂2
xixjϕ

)
dx dt

+

∫∫
QT

η(u)L[ϕ] dx dt+

∫
Rd
η(u0)ϕ(0, x) dx ≥ nu +mu,

(2.4)

for all non-negative ϕ ∈ C∞c ([0, T )× Rd), where

nu =

∫∫
QT

η′′(u)

K∑
k=1

( d∑
i=1

∂xiζ
a
ik(u)

)2

ϕ(t, x) dx dt,

mu =

∫∫
QT

∫
Rd\{0}

η′′(u; z) (u(t, x+ z)− u(t, x))
2
ϕ(t, x)π(dz) dx dt,

and

η′′(u; z) =

∫ 1

0

(1− τ)η′′((1− τ)u(t, x) + τu(t, x+ z)) dτ.

We remark that the chain rule (2.3) is automatically fulfilled when a(·) is a
scalar or a diagonal matrix, cf. Chen and Perthame [22], and in this case we can
drop (D.2) from the definition.

Starting from the definition of L (cf. calculations in the upcoming sections), we
can replace the term ∫∫

QT

η(u)L[ϕ] dx dt−mu,

occurring in (2.4) by∫∫
QT

∫
|z|<r

η(u)[ϕ(t, x+ z)− ϕ(t, x)−∇ϕ · z]π(dz) dx dt,

+

∫∫
QT

∫
|z|≥r

η′(u)[u(t, x+ z)− u(t, x)]π(dz) dx dt, ∀r ∈ (0, 1),

This formulation of the nonlocal term is directly related to the formulation used in
[1] for fractional conservation laws.

Our first result is the expected L1 contraction property (and thus the uniqueness)
of entropy solutions.
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Theorem 2.1. Suppose f and a satisfy (1.3) and (1.4)-(1.5), respectively, and
that the Lévy measure π(dz) satisfies (1.7). Then there exists an entropy solution
of (1.1)-(1.2). Let u, v be two entropy solutions of (1.1) with initial data u|t=0 =
u0 ∈ (L1 ∩ L∞)(Rd), v|t=0 = v0 ∈ (L1 ∩ L∞)(Rd). For a.e. t ∈ (0, T ), we have

(2.5)

∫
Rd

(u(t, x)− v(t, x))
+
dx ≤

∫
Rd

(u0 − v0)
+
dx.

Consequently, if u0 ≤ v0 a.e. in Rd then u ≤ v a.e. in QT , so whenever u0 = v0

a.e. in Rd, then u = v a.e. in QT .

This theorem generalizes to the “non-local diffusion” case the result of Chen and
Perthame [22]. The proof follows that of Bendahmane and Karlsen [8].

Our second result, which is a refinement of the previous theorem, reveals how
the entropy solution u depends on the Lévy measure π(dz), and the nonlinear fluxes
f, a (i.e., it is a “continuous dependence” estimate).

Theorem 2.2. Suppose f and a satisfy (1.3) and (1.4)-(1.5), respectively, and
that the Lévy measure π(dz) satisfies (1.7). Let u ∈ L∞(0, T ;BV (Rd)) be the
entropy solution of (1.1) with BV initial data u0 ∈ (L1 ∩ L∞ ∩ BV )(Rd) and
with a Lévy measure of the form π(dz) = m(z) dz for some integrable function
m : Rd \ {0} → R+.

Replace the data set

(f, a, π, u0), a = σa(σ)tr, π(dz) = m(z) dz

by another data set

(f̃ , ã, π̃(dz), v0), ã = σã(σã)tr, π̃(dz) = m̃(z) dz,

where f̃ , σã, π̃, m̃ satisfy the same regularity conditions as f, σa, π,m and moreover
v0 ∈ (L1 ∩ L∞)(Rd). Denote the corresponding entropy solution by v, and assume
that v ∈ C([0, T ];L1(Rd)). Suppose u and v take values in a closed interval I ⊂ R.

For any t ∈ (0, T ),

‖u(t, ·)− v(t, ·)‖L1(Rd)

≤ ‖u0 − v0‖L1(Rd) + C1t
∥∥∥f − f̃∥∥∥

W 1,∞(I);Rd)
+ C2

√
t
∥∥σa − σã∥∥

L∞(I;Rd×K)

+ C3

√
t

√√√√(∫
|z|<1

|z|2 |m(z)− m̃(z)| dz

)
+ C4t

∫
|z|≥1

|z| |m(z)− m̃(z)| dz,

(2.6)

where the constants Ci, i = 1, . . . , 4, depend on the L∞(0, T ;BV (Rd)) norm of u.

This theorem generalizes results in [20, 21] to the “fractional case”. Regarding
the applicability of Theorem 2.2, assuming u0 ∈ BV (Rd) it follows that an entropy
solution u with u(0, x) = u0 belongs to L∞(0, T ;BV (Rd)), as required.

3. Proof of Theorem 2.1 (existence)

Although a detailed version of the existence of entropy solutions to (1.1) is pre-
sented in [36], to motivate the entropy condition and to present a brief sketch, let
us consider the following accompanying problem containing a uniformly parabolic
operator depending on a small parameter ρ > 0:

(3.1) ∂tuρ + divf(uρ) = div(a(uρ)∇uρ) + L[uρ(t, ·)] + ρ∆uρ.

It is standard to construct a smooth solution uρ to (3.1), for each fixed ρ > 0.
Indeed, it can be done using the Galerkin method and the compactness argument,
see Chapter 5 in [26] and [37].
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As usual, the game is to pass to the limit as ρ → 0 and identify the entropy
condition satisfied by the limit function u. We will be brief in establishing the
following estimates, since most of them are similar to the ones in [22] and we will
assume u0 ∈ W 2,1 ∩ H1 ∩ L∞(Rd), for general u0 ∈ L1(Rd) one can follow the
approximation procedure presented in [22].

The following estimates can be established for sufficiently regular initial data:

‖uρ‖L∞(QT ) ≤ C; |uρ(t, ·)|BV (Rd) ≤ C;

‖uρ(t2, ·)− uρ(t1, ·)‖L1(Rd) → 0, as |t2 − t1| → 0, uniformly in ρ.

Hence there is a limit u such that, passing if necessary to a subsequence as ρ→ 0,

(3.2) uρ → u a.e. in QT and in Lp(QT ) for any p ∈ [1,∞).

Next, we derive an energy estimate. To this end, fix a convex C2 function η and
define q, r by q′ = η′f ′, r′ = η′a. Multiplying (3.1) by η′ yields

(3.3) ∂tη(uρ) + divq(uρ) =

d∑
i,j=1

∂2
ijrij(uρ) + L[η(uρ] + ρ∆η(uρ)− νρ

where νρ = ν1
ρ + ν2

ρ + ν3
ρ consists of three parts:

(i) the entropy dissipation term

ν1
ρ := ρ∆η(uρ)− ρη′(uρ)∆uρ = ρη′′(uρ) |∇uρ|2 ;

(ii) the parabolic dissipation term

ν2
ρ :=

d∑
i,j=1

∂2
ijrij(uρ)− η′(uρ)div(a(uρ)∇uρ) = η′′(uρ)

K∑
k=1

(
d∑
i=1

∂xiζ
a
ik(uρ)

)2

;

(iii) the fractional parabolic dissipation term

ν3
ρ =

∫
Rd\{0}

η′′(uρ; z) (uρ(t, x+ z)− uρ(t, x))
2
π(dz),

where η′′(uρ; z) =
∫ 1

0
(1− τ)η′′((1− τ)uρ(t, x) + τuρ(t, x+ z)) dτ .

In deriving (3.3), the “new” computation is the one showing that the commutator

L[η(uρ)]− η′(uρ)L[uρ]

equals ν3
ρ , but this follows easily from Taylor’s formula with integral reminder:

η(b)− η(a) = η′(a) (b− a)

+

(∫ 1

0

(1− τ)η′′((1− τ)a+ τb) dτ

)
(b− a)

2
.

(3.4)

Specifying η(z) = z2

2 in (3.3) gives∫ T

0

∫
Rd

K∑
k=1

(
d∑
i=1

∂xiζ
a
ik(uρ)

)2

dx dt ≤ C

and

(3.5)

d∑
i=1

∂xiζ
a
ik(uρ) ⇀

d∑
i=1

∂xiζ
a
ik(u) in L2(QT ).

From this we easily see, as in [22], that (2.1) and (2.3) in Definition 2.1 hold.
Regarding the non-local operator L, the same choice for η reveals that (2.2) in

Definition 2.1 holds. Now set

Π(dz) :=
(
|z|2 1|z|<1 + |z| 1|z|≥1

)
π(dz),
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and note that Π(dz) is a bounded Radon measure. Introducing the short-hand
notation

Dρ(t, x, z) =
uρ(t, x+ z)− uρ(t, x)

|z|1|z|<1
+
√
|z|1|z|≥1

dµ = Π(dz)⊗ dx⊗ dt,

(2.2) translates into Dρ being uniformly bounded in L2((0, T )×Rd×(Rd\{0}); dµ).
Consequently, we may assume that there is a limit function D such that

Dρ ⇀ D in L2((0, T )× Rd × (Rd \ {0}); dµ).

Let us identify D. To this end, fix a smooth function ϕ in C∞c (QT ) and observe∫∫
QT

∫
Rd\{0}

ϕ(t, x)
uρ(t, x+ z)− uρ(t, x)

|z|1|z|<1 +
√
|z|1|z|≥1

Π(dz) dx dt

=

∫∫
QT

∫
Rd\{0}

ϕ(t, x+ z)− ϕ(t, x)

|z|1|z|<1 +
√
|z|1|z|≥1

uρ(t, x) Π(dz) dx dt.

Now, using that uρ
ρ→0−→ u a.e. in QT , we conclude that

Dρ ⇀
u(t, x+ z)− u(t, x)

|z|1|z|<1 +
√
|z|1|z|≥1

in L2((0, T )× Rd × (Rd \ {0}); dµ).

We are now in a position to pass to the distributional limit in (3.3) to recover
the desired entropy condition satisfied by the limit u = limρ→0 uρ. Note that to
interpret (3.3) in the sense of distributions we use the formula

(3.6)

∫
Rd
L[Φ(x)]φ(x) dx =

∫
Rd

Φ(x)L[φ(x)] dx,

which holds for all sufficiently regular (say, C2) functions Φ, φ : Rd → R. This
relation is easily obtained by a change of variables (t, x, z) 7→ (t, x+ z,−z) and an
integration by parts in x.

We claim that the entropy condition satisfied by the limit u = limρ→0 uρ takes
the following form: for any convex C2 entropy function η and corresponding entropy
fluxes q, r defined by q′ = η′f ′, r′ = η′a,

(3.7) ∂tη(u) + divq(u) ≤
∑
i,j

∂xixjrij(u) + L[η(u)]− nu,η −mu,η

in the sense of distributions, where

nu,η = η′′(u)

K∑
k=1

(
d∑
i=1

∂xiζ
a
ik(u)

)2

is the parabolic dissipation measure with respect to u and

mu,η =

∫
Rd\{0}

η′′(u; z) (u(t, x+ z)− u(t, x))
2
π(dz),

is the fractional parabolic dissipation measure with respect to u.
In view of (3.2), to verify (3.7) we only need to argue that

lim inf
ρ→0

∫∫
QT

νρ dx dt ≥
∫∫

QT

(nu,η +mu,η) dx dt.
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First,
∫∫
QT

ν1
ρ dx dt ≥ 0 for each ρ > 0. Second, thanks to the weak convergence

(3.5) and a standard weak lower semi-continuity result for quadratic functionals,

lim inf
ρ→0

∫ T

0

∫
Rd
η′′(uρ)

K∑
k=1

(
d∑
i=1

∂xiζ
a
ik(uρ)

)2

ϕdx dt

≥
∫ T

0

∫
Rd
η′′(u)

K∑
k=1

(
d∑
i=1

∂xiζ
a
ik(u)

)2

ϕdx dt,

for all test functions ϕ ∈ C∞c . Similarly,

lim inf
ρ→0

∫∫
QT

∫
Rd\{0}

η′′(uρ; z) (uρ(t, x+ z)− uρ(t, x))
2
ϕπ(dz) dx dt

≥
∫∫

QT

∫
Rd\{0}

η′′(u; z) (u(t, x+ z)− u(t, x))
2
ϕπ(dz) dx dt,

for all test functions ϕ ∈ C∞c . Combining, we deduce that (2.4) in Definition 2.1
holds. This completes the proof.

4. Proof of Theorem 2.1 (uniqueness)

We shall need C2 approximations η±ε (z) of the functions

η±(z) := (z)± = max (±(z), 0) , z ∈ R.

We build these by picking nondecreasing C1 approximations sgn±ε (z) of

sgn +(z) :=

{
0, if z ≤ 0,

1, if z > 0,
sgn−(z) :=

{
−1, if z ≤ 0,

0, if z > 0,

and defining

η±ε (z) :=

∫ z

0

sgn±ε (ξ) dξ, z ∈ R.

For example, we can take

sgn +
ε (z) =


0, if z < 0,

sin( π2εz), if 0 ≤ z ≤ ε,
1, if z > ε.

sgn−ε (z) =


−1, if z < −ε,
sin( π2εz), if −ε ≤ z ≤ 0,

0, if z > 0.

The functions η±ε are C2 and convex. Moreover,

η±ε (z)
ε→0−→ η±(z), z ∈ R.

Observe that (η±ε (· − c))c∈R is a family of entropies. Given these entropies, we
introduce the corresponding entropy fluxes

q±ε (z, c) =

∫ z

c

(η±ε )′(ξ − c)f ′(ξ)dξ, z, c ∈ R,

r±ε (z, c) =

∫ z

c

(η±ε )′(ξ − c)a(ξ) dξ, z, c ∈ R.

Clearly, as ε→ 0,

q±ε (z, c)→ q±(z, c) := sgn±(z − c)(f(z)− f(c)), z, c ∈ R,
r±ε (z, c)→ r±(z, c) := sgn±(u− c)(A(u)−A(c)), z, c ∈ R,

where the (matrix-valued) function A(·) is defined by A(z) =

∫ u

0

a(ξ) dξ.
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Observe that (η±ε (· − c), q±ε (·, c), r±ε (·, c))c∈R is a family of entropy-entropy flux
triples, so choosing η = η±ε in (2.4) yields

∫∫
QT

(
η±ε (u− c)∂tϕ+

d∑
i=1

q±ε,i(u, c)∂xiϕ+

d∑
i,j=1

r±ε,ij(u, c)∂
2
xixjϕ

)
dx dt

+

∫∫
QT

η±ε (u− c)L[ϕ] dx dt+

∫
Rd
η±(u0 − c)ϕ(0, x) dx

≥
∫∫

QT

(η±ε )′′(u− c)
K∑
k=1

( d∑
i=1

∂xiζ
a
ik(u)

)2

ϕdx dt

+

∫∫
QT

∫
Rd\{0}

(η±ε )′′(u− c; z) (u(t, x+ z)− u(t, x))
2
ϕπ(dz) dx dt.

(4.1)

Moreover,

(η±ε )′′(u− c; z) =

∫ 1

0

(1− τ)(η±ε )′′
(

(1− τ)u(t, x) + τu(t, x+ z), c
)
dτ

=

∫ 1

0

(1− τ)(sgn±ε )′
(

(1− τ)(u(t, x)− c) + τ(u(t, x+ z)− c)
)
dτ.

To proceed, the following simple observations will be useful:

• sgn−ε (z − c) = −sgn +
ε (c− z) and η−ε (z − c) = η+

ε (c− z);
• q−ε (z, c) = q+

ε (c, z) and r−ε (z, c) = r+
ε (c, z);

• (η−ε )′′(z − c) = (η+
ε )′′(c− z).

Employing these observations, we can rewrite the “−” part of (4.1) as

∫∫
QT

(
η+
ε (c− u)∂tϕ+

d∑
i=1

q+
ε,i(c, u)∂xiϕ+

d∑
i,j=1

r+
ε,ij(c, u)∂2

xixjϕ
)
dx dt

+

∫∫
QT

η+
ε (c− u)L[ϕ] dx dt+

∫
Rd
η+
ε (c− u0)ϕ(0, x) dx

≥
∫∫

QT

(η+
ε )′′(c− u)

K∑
k=1

( d∑
i=1

∂xiζ
a
ik(u)

)2

ϕdx dt

+

∫∫
QT

∫
Rd\{0}

(η+
ε )′′(c− u; z) (u(t, x+ z)− u(t, x))

2
ϕπ(dz) dx dt.

(4.2)

To establish the L1 contraction property (2.5) we shall employ the doubling-
of-variables device of Kruz̆kov [38]. Let u = u(t, x), v = v(s, y) be two entropy
solutions as stated in Theorem 2.1. Moreover, let ϕ = ϕ(t, x, s, y) be a test function
in the doubled variables (t, x, s, y). To simplify the presentation, we introduce the
following notation (with ∇x+y being short-hand for ∇x +∇y)

Lx[ϕ] :=

∫
Rd\{0}

[
ϕ(t, x+ z, s, y)− ϕ− z · ∇xϕ1|z|<1

]
π(dz),

Ly[ϕ] =

∫
Rd\{0}

[
ϕ(t, x, s, y + z)− ϕ− z · ∇yϕ1|z|<1

]
π(dz),

Lx+y[ϕ] =

∫
Rd\{0}

[
ϕ(t, x+ z, s, y + z)− ϕ− z · ∇x+yϕ1|z|<1

]
π(dz),
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In the “+” part of (4.1) written the entropy solution u(t, x) we choose c = v(s, y)
and integrate the result over (s, y), obtaining

∫∫∫∫ (
η+
ε (u− v)∂tϕ+

d∑
i=1

q+
ε,i(u, v)∂xiϕ+

d∑
i,j=1

r+
ε,ij(u, c)∂

2
xixjϕ

)
dx dt dy ds

+

∫∫∫∫
η+
ε (u− v)Lx[ϕ] dx dt dy ds+

∫∫∫
η+
ε (u0 − v)ϕ(0, x, s, y) dx dy ds

≥
∫∫

QT

(η+
ε )′′(u− v)

K∑
k=1

( d∑
i=1

∂xiζ
a
ik(u)

)2

ϕdx dt dy ds

+

∫∫∫∫ ∫
Rd\{0}

(η+
ε )′′(u(t, ·)− v; z) (u(t, x+ z)− u(t, x))

2
ϕπ(dz) dx dt dy ds.

(4.3)

Similarly, in (4.2) written for the entropy solution v(s, y) we choose c = u(t, x)
and integrate over (t, x), thereby obtaining

∫∫∫∫ (
η+
ε (u− v)∂sϕ+

d∑
i=1

q+
ε,i(u, v)∂yiϕ+

d∑
i,j=1

r+
ε,ij(u, v)∂2

yiyjϕ
)
dx dt dy ds

+

∫∫∫∫
η+
ε (u− v)Ly[ϕ] dx dt dy ds+

∫∫∫
η+
ε (u− v0)ϕ(t, x, 0, y) dx dt dy

≥
∫∫∫∫

(η+
ε )′′(u− v)

K∑
k=1

( d∑
i=1

∂yiζ
a
ik(v)

)2

ϕdx dt dy ds

+

∫∫∫∫ ∫
Rd\{0}

(η+
ε )′′(u− v(s, ·); z) (v(s, y + z)− v(s, y))

2
ϕπ(dz) dx dt dy ds.

(4.4)

Adding (4.3) and (4.4) yields

(4.5) Itime(ε) + Iconv(ε) + Idiff(ε) + Ifdiff(ε) + Iinit(ε) ≥ Idiss(ε) + Ifdiss(ε),
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where

Itime(ε) =

∫∫∫∫
η+
ε (u− v)(∂t + ∂s)ϕdx dt dy ds

Iconv(ε) =

∫∫∫∫ d∑
i=1

q+
ε,i(u, v)(∂xi + ∂yi)ϕdx dt dy ds

Idiff(ε) =

∫∫∫∫ d∑
i,j=1

r+
ε,ij(u, v)(∂2

xixj + ∂2
yiyj )ϕdx dt dy ds

Ifdiff(ε) =

∫∫∫∫
η+
ε (u− v)

(
Lx[ϕ] + Ly[ϕ]

)
dx dt dy ds

Iinit(ε) =

∫∫∫
η+
ε (u0 − v)ϕ(0, x, s, y) dx dy ds

+

∫∫∫
η+
ε (u− v0)ϕ(t, x, 0, y) dx dt dy

Idiss(ε) =

∫∫∫∫
(η+
ε )′′(u− v)

×
K∑
k=1

[( d∑
i

∂xiζ
a
ik(u)

)2

+
( d∑
i=1

∂yiζ
a
ik(v)

)2
]
ϕdx dt dy ds

Ifdiss(ε) =

∫∫∫∫ ∫
Rd\{0}

[
(η+
ε )′′(u(t, ·)− v; z) (u(t, x+ z)− u(t, x))

2

+ (η+
ε )′′(u, v(s, ·); z) (v(s, y + z)− v(s, y))

2

]
× ϕπ(dz) dx dt dy ds.

In view of the inequality “a2 + b2 ≥ 2ab”, we have Idiss(ε) ≥ Ĩdiss(ε), with

Ĩdiss(ε) = 2

∫∫∫∫
(η+
ε )′′(u− v)

K∑
k=1

d∑
i,j=1

∂xiζ
a
ik(u)∂yjζ

a
jk(v)ϕdx dt dy ds.

Arguing exactly as in [8], it follows that

lim
ε→0

(
Idiff(ε)− Ĩdiss(ε)

)
≤
∫∫∫∫ d∑

i,j=1

r+
ij(u, v)(∂2

xixj + 2∂2
xiyj + ∂2

yiyj )ϕdx dt dy ds.
(4.6)

Fix a small number κ > 0, and let us split L into two parts

L[φ] =

∫
|z|≤κ

[
φ(t, x+ z)− φ(t, x)− z · ∇φ1|z|<1

]
π(dz)

+

∫
|z|>κ

[
φ(t, x+ z)− φ(t, x)− z · ∇φ1|z|<1

]
π(dz)

=: Lκ[φ] + Lκ[φ], ∀φ ∈ C2,

and similarly

Lx = Lx,κ + Lκx, Ly = Ly,κ + Lκy , Lx+y = Lx+y,κ + Lκx+y.

The corresponding splitting of Ifdiff(ε) is written

Ifdiff(ε) = Ifdiff,κ(ε) + Iκfdiff(ε).
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We also need to introduce the operator L̃κ defined by writing

Lκ[ϕ] = L̃κ[ϕ]−

(∫
|z|>κ

z1|z|<1 π(dz)

)
· ∇xϕ,

with similar definitions for L̃κx, L̃κy , and L̃κx+y. Observe that (3.6) continues to

hold for all these operators. The function obtained by replacing Lκ with L̃κ in the

definition of Iκfdiff(ε) will be named Ĩκfdiff(ε).
Clearly, in view of (1.7),

(4.7) |Ifdiff,κ(ε)| ≤ C
∥∥D2ϕ

∥∥
L1(QT×QT )

∫
|z|≤κ

|z|2 π(dz)
κ→0−→ 0,

for some constant C independent of κ and ε.

Let us analyze Ĩκfdiff(ε). By (3.6),

Ĩκfdiff(ε) =

∫∫∫∫ (
L̃κx
[
η+
ε (u− v)

]
+ L̃κy

[
η+
ε (u− v)

])
ϕdt dx dy ds.

Specifying a = u(t, x)− v(s, y) and b = u(t, x+ z)− v(s, y) in (3.4) yields

η+
ε (u(t, x+ z)− v(s, y))− η+

ε (u(t, x)− v(s, y))

= (η+
ε )′(u(t, x)− v(s, y)) (u(t, x+ z)− u(t, x))

+ (η+
ε )′′(u(t, ·)− v; z) (u(t, x+ z)− u(t, x))

2
.

(4.8)

Similarly, taking a = u(t, x)− v(s, y), b = u(t, x)− v(s, y + z) in (3.4) yields

η+
ε (u(t, x)− v(s, y + z))− η+

ε (u(t, x)− v(s, y))

= −(η+
ε )′(u(t, x)− v(s, y)) (v(s, y + z)− v(s, y))

+ (η+
ε )′′(u− v(s, ·); z) (v(s, y + z)− v(s, y))

2
.

(4.9)

Adding the first term on the right-hand side of (4.8) to the first term on the
right-hand side of (4.9) yields

(η+
ε )′(u(t, x)− v(s, y)) (u(t, x+ z)− u(t, x))

− (η+
ε )′(u(t, x)− v(s, y)) (v(s, y + z)− v(s, y))

= (η+
ε )′(u(t, x)− v(s, y))

[
(u(t, x+ z)− v(s, y + z))− (u(t, x)− v(s, y))

]
≤ η+

ε (u(t, x+ z)− v(s, y + z))− η+
ε (u(t, x)− v(s, y)),

where we have used the convexity of ηε to derive the last inequality.

In view of these findings, we can rewrite Ĩκfdiff(ε) as follows:

Ĩκfdiff(ε)− Iκfdiss(ε) ≤
∫∫∫∫

L̃κx+y

[
η+
ε (u(t, ·)− v(s, ·))

]
ϕdt dx dy ds

(3.6)
=

∫∫∫∫
η+
ε (u− v)L̃κx+y[ϕ] dt dx dy ds,

where

Iκfdiss(ε) =

∫∫∫∫ ∫
|z|>κ

[
(η+
ε )′′(u(t, ·)− v; z) (u(t, x+ z)− u(t, x))

2

+ (η+
ε )′′(u− v(s, ·); z) (v(s, y + z)− v(s, y))

2

]
× ϕπ(dz) dx dt dy ds.
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Consequently,

Iκfdiff(ε)− Iκfdiss(ε) ≤
∫∫∫∫

η+
ε (u− v)Lκx+y[ϕ] dt dx dy ds,

The next step is to first send κ → 0 and then ε → 0. Related to this, observe
that

lim
κ→0

Iκfdiff(ε) = Ifdiff(ε), lim
κ→0

Iκfdiss(ε) = Ifdiss(ε)

for each fixed ε > 0, by the dominated convergence theorem. Moreover, we clearly
have limκ→0 Lκx+y[ϕ] = Lx+y[ϕ]. In view of this and (4.7), we conclude that

(4.10) Ifdiff(ε)− Ifdiss(ε) ≤
∫∫∫∫

η+
ε (u− v)L[ϕ] dt dx dy ds.

By (4.6) and (4.10), It follows from (4.5) and sending ε→ 0 that

∫∫∫∫ (
(u− v)+(∂t + ∂s)ϕ+

d∑
i=1

q+
i (u, v)(∂xi + ∂yi)ϕ

+

d∑
i,j=1

r+
ij(u, v)(∂2

xixj + 2∂2
xiyj + ∂2

yiyj )ϕ+ η+(u− v)Lx+y[ϕ]

)
dx dt dy ds

+

∫∫∫
(u0 − v)+ϕ(0, x, s, y) dx dy ds+

∫∫∫
(u− v0)+ϕ(t, x, 0, y) dx dt dy ≥ 0.

(4.11)

Let us specify the test function ϕ = ϕ(t, x, s, y). To this end, fix a nonnegative
test function φ = φ(t, x) ∈ C∞c ([0,∞) × Rd), and pick two sequences {θν}ν>0 ⊂
C∞c (0, ν), {δµ}µ>0 ⊂ C∞c (B(0, µ)) of approximate delta functions, where B(0, µ)

denotes the open ball centered at the origin with radius µ. Then take

(4.12) ϕ(t, x, s, y) = θν(s− t)δµ(y − x)φ(t, x).

Simple calculations reveal that

(∂t + ∂s)ϕ = θν(s− t)δµ(y − x)∂tφ(t, x),

(∂xi + ∂yi)ϕ = θν(s− t)δµ(y − x)∂xiφ(t, x),

(∂2
xixj + 2∂2

xiyj + ∂2
yiyj )ϕ = θν(s− t)δµ(y − x)∂2

xixjφ(t, x)

and

ϕ(t, x+ z, s, y + z)− ϕ(t, x, s, y)

= θν(s− t)δµ(y − x) (φ(t, x+ z)− φ(t, x)) .

Note that θν = 0 on (−∞, 0] and so ϕ(t, x, 0, y) ≡ 0. By the choice of the test
function ϕ and the observations above, we deduce from (4.11) that∫∫∫∫

(u− v)+θν(s− t)δµ(y − x)∂tφ(t, x) dx dt dy ds

+

∫∫∫∫ d∑
i=1

q+
i (u, v)θν(s− t)δµ(y − x)∂xiφ(t, x) dxdt dyds

+

∫∫∫∫ d∑
i,j=1

r+
ij(u, v)θν(s− t)δµ(y − x)∂2

xixjφ(t, x) dx dt dy ds

+

∫∫∫∫
(u− v)+θν(s− t)δµ(y − x)L[φ] dx dt dy ds+ Iu0,v(ν, µ) ≥ 0,

(4.13)
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where

Iu0,v(ν, µ) :=

∫∫∫
(u0 − v)+θν(s)δµ(y − x)φ(0, x) dx dy ds

= −
∫∫∫

(u0 − v)+∂s

(
φ̃ν(s)δµ(y − x)φ(0, x)

)
dx dy ds,

with

φ̃ν(s) :=

∫ T

s

θν(τ) dτ =

∫ ν

min(s,ν)

θν(τ) dτ
ν→0−→ 1.

Specifying ϕ = φ̃ν(s)δµ(y−x) in the entropy inequality for v and noting that θν(s)
vanishes for s > ν, we obtain∫∫

(u0 − v)+∂sϕ(s, x, y) dy ds

≤
∫∫

(u0 − v)+θν(s)δµ(y − x)φ(0, x) dy ds+ o(ν)

ν→0−→
∫∫

(u0 − v)+δµ(y − x)φ(0, x) dy ds,

(4.14)

where the “o(ν)” term follows from an integrability argument.
Hence, sending ν, µ→ 0, we deduce

lim sup
µ→0

lim sup
ν→0

Iu0,v(ν, µ)

≤ lim sup
µ→0

∫∫
(u0 − v0)+δµ(y − x)φ(0, x) dx dy

=

∫
(u0 − v0)+φ(0, x) dx,

(4.15)

with u0 = u0(x) and v0 = v0(x).
Keeping in mind (4.15) when sending µ, ν → 0 in (4.13), we conclude that∫∫

QT

(
(u− v)+∂tφ+

d∑
i=1

q+
i (u, v)∂xiφ

+

d∑
i,j=1

r+
ij(u, v)∂2

xixjφ+ (u− v)+L[φ]

)
dx dt

+

∫
Rd

(u0 − v0)+φ(0, x) dx ≥ 0,

(4.16)

where all the involved functions depend on (t, x). It now only takes a standard
argument to conclude from (4.16) that Theorem 2.1 holds. Indeed, one chooses a
sequence of functions 0 ≤ φ ≤ 1 from C∞c ([0, T ) × Rd) that converges to 1[0,t)×Rd

for a Lebesgue point t of
∫
Rd(u − v)+ dx and then use the integrability of u, v to

conclude the proof.
This concludes the proof of Theorem 2.1.

5. Proof of Theorem 2.2 (continuous dependence)

We again employ the doubling of variables device as in the previous section, but
with a slightly different choice of the entropy function. For each ε > 0, define

sgn ε(ξ) =


−1, if ξ < −ε
sin( π2εξ), if |ξ| ≤ ε
1, if ξ > ε,
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which is a C1 approximation of sgn (·). This choice gives rise to a C2 approximation
ηε(z) =

∫ z
0

sgn ε(ξ) dξ of the entropy flux |z|. As before, we introduce the corre-
sponding entropy flux functions ηε(u, c), qεi (u, c), and rεij(u, c). We now employ the
doubling variables technique using the test function

ϕ(t, x, s, y) = θν(s− t)δµ(y − x)Θα(t),

where θν , δµ are symmetric approximate delta functions with support in (−ν, ν)
and B(0, µ), respectively. Fix a time τ from (0, T ). For any α > 0 with 0 < α <
min(τ0, T − τ), we define

Θα(t) = Hα(t)−Hα(t− τ), Hα(t) =

∫ t

−∞
θα(σ) dσ.

so that Θ′α(t) = θα(t)− θα(t− τ).
Proceeding as in the previous section (cf. also [20]) and sending ε→ 0, we find

−
∫∫∫∫

|u− v| θν(s− t)δµ(y − x)Θ′α(t) dx dt dy ds ≤ Iconv − Idiff + Ifdiff ,

where

Iconv :=

∫∫∫∫
[G(u, v)− F (u, v)] · ∇xδµ(y − x)θν(s− t)Θα(t) dx dt dy ds,

F (u, v) := sgn (u− v) (f(u)− f(v)) , G(u, v) := sgn (u− v) (g(u)− g(v)) ,

Idiff :=

∫∫∫∫ d∑
i,j=1

Θα(t)θν(s− t)∂2
xixjδµ(y−x)

∫ u

v

sgn (ξ− v)εa−bij (ξ) dξ dx dt dy ds,

εa−bij (ξ) :=

K∑
k=1

(
σaik(ξ)σajk(ξ)− 2σaik(ξ)σbjk(ξ) + σbik(ξ)σbjk(ξ)

)
.

and Ifdiff = Ifdiff1 + Ifdiff2 with

Ifdiff1
:=

∫∫∫∫ ∫
|z|<1

|u− v| θν(s− t)Θα(t)

×
[
δµ(y − x− z)− δµ(y − x)−∇δµ(y − x) · z

]
× (m(z)− m̃(z)) dz dx dt dy ds

and

Ifdiff2 :=

∫∫∫∫ ∫
|z|≥1

|u− v|θν(s− t)Θα(t)
[
δµ(y − x− z)− δµ(y − x)

]
× (m(z)− m̃(z)) dz dx dt dy ds,

By triangle inequality

−
∫∫∫∫

|u(t, x)− v(s, y)| θν(s− t)δµ(y − x)Θ′α(t) dx dt dy ds

≥ −
∫∫∫∫

|u(t, y)− v(t, y)| θν(s− t)δµ(y − x) |Θ′α(t)| dx dt dy ds

−
∫∫∫∫

|v(t, y)− v(s, y)| θν(s− t)δµ(y − x) |Θ′α(t)| dx dt dy ds

−
∫∫∫∫

|u(t, x)− u(t, y)| θν(s− t)δµ(y − x) |Θ′α(t)| dx dt dy ds

=: L+Rt +Rx.

Keeping in mind that v ∈ C(L1) and u ∈ L∞(BV ), it is standard to show that

lim
ν→0

Rt = 0, lim sup
α→0

|Rx| ≤ Cµ
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and moreover, since also u(t)→ u0, v(t)→ v0 as t→ 0,

lim
α→0

L = ‖u(τ, ·)− v(τ, ·)‖L1(Rd) − ‖u0 − v0‖L1(Rd) .

Following [20], using u ∈ L∞(BV ) we conclude that

lim
α→0

lim
ν→0
|Iconv| ≤ Cτ ‖f − g‖Lip(I) ,

and, exploiting also that
∫
|∂xiδµ| ≤ C/µ,

lim
α→0

lim
ν→0
|Idiff | ≤

C

µ
τ
∥∥(σa − σb)(σa − σb)tr

∥∥
L∞(I;Rd×d)

.

It remains to estimate |Ifdiff |. First, we nconsider Ifdiff1
. Using the Taylor and

Fubini theorems we obtain

|Ifdiff1
| =

∫∫∫ ∫
|z|<1

∫ 1

0

(1− τ)θµ(s− t)Θα(t)(m̃(z)−m(z))

×
(∫

Rd
|u(t, x)− v(s, y)|D2δµ(y − x− τz) z · z dx

)
dτ dz dy ds dt.

Thanks to |u(t, ·)− v(s, y)| ∈ BV (Rd), an integration by parts yields

Ifdiff1
=

∫∫∫ ∫
|z|<1

∫ 1

0

(1− τ)θµ(s− t)Θα(t)(m̃(z)−m(z))

×
(∫

Rd
∇δµ(y − x− τz) · z Dx (|u(t, x)− v(s, y)|) · z dx

)
dτ dz dy ds dt,

(5.1)

where the inner integral is taken with respect to the bounded Borel measure
D (|u(t, ·)− v(s, y)|) · z. Since |D(u(t, ·) − v(s, y))| ≤ |D(u(t, ·))|, the term inside
the parentheses in (5.1), is upper bounded by

|z|2
∫
Rd

∫
Rd
|∇δµ(y − x− τz)| |dD(u(t, ·))(x)| dy ≤ |z|2 |u(t, ·)|BV (Rd) ‖∇δµ‖L1(Rd) ,

where we have used that |Du(t, ·)| is finite and the Fubini’s theorem to first integrate
with respect to y. Hence,

lim
α→0

lim
ν→0
|Ifdiff1 | ≤

C

µ
τ

∫
|z|<1

|z|2 |m(z)− m̃(z)| dz,

where C > 0 is a finite constant.
Similarly, relying again on the L∞(BV ) regularity of u, it is not difficult to

deduce via an integration by parts the estimate

lim
ν→0

lim
α→0
|Ifdiff2

| ≤ Cτ
∫
|z|≥1

|z| |m(z)− m̃(z)| dz.

Finally, we collect the bounds we have obtained so far and then optimize over µ
to obtain the desired continuous dependence estimate (2.6).
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