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[1] This article presents a three-dimensional microgeodynamic model of grain-melt
geometry in partially molten rocks. The isotropic unit cell of the partially molten rock is
characterized by a face-centered-cubic symmetry, consisting of rhombic dodecahedral
grains. The variation of surface tension between grain-grain and grain-melt contacts excites
a coupled viscous flow within grains and the interstitial melt, leading to a steady state
grain-melt geometry. We obtain the fractional area of intergranular contact, contiguity,
from these models as a function of melt volume fraction, between melt fractions of
0.05 and 0.25. Comparison with previous results indicates that the contiguity in
three-dimensional models is lower than in two-dimensional models. The contrast
between two- and three-dimensional values of contiguity increases at high melt volume
fractions. We apply our model to the ultralow-velocity zones (ULVZs) and the very low
velocity province (VLVP) in the Earth’s core-mantle boundary. The observed seismic
signature of the ULVZ and VLVP can be explained by peridotite melt volume fractions
between 0.08 and 0.12 and between 0.01 and 0.05, respectively, in a matrix of elastic
properties similar to the Preliminary Earth Reference Model.

Citation: Wimert, J., and S. Hier-Majumder (2012), A three-dimensional microgeodynamic model of melt geometry in the
Earth’s deep interior, J. Geophys. Res., 117, B04203, doi:10.1029/2011JB009012.

1. Introduction

[2] Melt volume fraction in partially molten rocks influ-
ences the effective physical properties of the rock [Walsh,
1969; Watt et al., 1976; Takei, 1998, 2000, 2002; Yoshino
et al., 2005; Scott and Kohlstedt, 2006; ten Grotenhuis et al.,
2005; Faul, 2001; Hier-Majumder, 2008; Hier-Majumder
and Abbott, 2010; Hustoft and Kohlstedt, 2006]. As the vol-
ume fraction of melt in grain edge tubules and pockets
increases, the fractional area of intergranular contact, con-
tiguity, decreases. Since the elastic strength of the load-
bearing framework is controlled by contiguity, the effective
bulk and shear moduli of partially molten rocks decrease
with an increase in melt fraction. As the melt fraction
reaches the threshold of disaggregation, intergranular con-
tact is lost, and the effective shear modulus becomes zero
[Takei, 2002]. Thus, the velocity of shear waves is more
sensitive to partial melting than that of P waves. In inter-
preting the melt volume fraction from observed differential
reductions in seismic body wave velocities, a parametriza-
tion of the contiguity-melt fraction relation is thus necessary.
[3] The relation between contiguity and melt fraction has

been studied in a number of theoretical and experimental
studies. The seminal work of von Bargen and Waff [1986]

explored the influence of melt fraction and dihedral angle
on the three-dimensional geometry of melt tubules and
pockets for melt volume fractions up to 0.05. Experimental
results, obtained from high-resolution micrographs of
polished sections of synthetic and natural rocks, investigate
the relation between melt fraction and contiguity over a
larger range of melt fraction and various dihedral angles
(see Yoshino et al. [2005] for a compilation of data).
Recently, X-ray microtomography has revealed direct visu-
alization of three-dimensional melt distribution in partially
molten aggregates [Zhu et al., 2011; Watson and Roberts,
2011]. Contiguity, however, is yet to be measured directly
using this technique. Currently, the only measurement of
contiguity at moderate to high melt fractions arise from two-
dimensional measurements or extrapolation of the three-
dimensional model of von Bargen and Waff [1986].
[4] This work investigates the melt microstructure and the

variation of contiguity with melt fraction at melt fractions
between 0.05 and 0.25. Following a recent suite of works
[Hier-Majumder, 2008, 2011; Hier-Majumder and Abbott,
2010], we employ a set of coupled mass and momentum
conservation equations aided with appropriate boundary and
jump conditions (balance equations for change in traction
across the grain-melt interface) for a partially molten rock.
Variation of surface tension between grain-grain and grain-
melt contacts drives a viscous flow in the interior of the
grains and the melt tubules until a steady state is attained. We
consider a face-centered-cubic (FCC) unit cell containing a
melt volume fraction of approximately 0.26 and composed of
spherical grains as the unperturbed, reference state. As the
perturbation arising from interaction with the neighboring
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grains increases, the contact faces become more faceted,
bringing the centers of the grains together, and reducing the
volume of the unit cell. Once the contiguity and melt volume
fraction are calculated from the steady state grain shape, we
use the “equilibrium geometry” model of Takei [2002] to
obtain the effective bulk and shear moduli of the unit cell.
[5] Two kinds of space-filling polyhedra are used to

describe the grain shape in dense, multiparticle aggregates
[Lissant, 1966; German, 1985; Park and Yoon, 1985; von
Bargen and Waff, 1986]. While von Bargen and Waff [1986]
employed a truncated octahedral or tetrakaidecahedral
geometry, Park and Yoon [1985] argued that a rhombic
dodecahedron geometry is equally applicable for sintering
models of multiphase materials. Lissant [1966] argues that
tetrakaidecahedral geometry is preferred for melt fractions
below 0.06, and that the geometry of the rhombic dodeca-
hedron is preferred for higher melt fractions. Later work of
Takei [1998] also argues in favor of the rhombic dodecahe-
dron geometry. This work explores the contiguity-melt
fraction relation beyond the narrow range between 0 and
0.05 studied by von Bargen and Waff [1986]. In addition, the
equilibrium geometry model of Takei [2002] used to process
the output of this model is ideally suited for rhombic
dodecahedral grains. Therefore, we selected rhombic
dodecahedral symmetry to describe perturbed grains.
[6] Earth’s core-mantle boundary presents two relevant

test cases for this study. First, an L-shaped, very low velocity
province (VLVP) located at the core-mantle boundary
beneath the South Atlantic and Indian oceans, is marked by
reduction of shear wave velocity by 2% to 12% [Wen et al.,
2001; Wen, 2001; Wang and Wen, 2004]. The P wave
velocity in this region is also reduced by up to 3%. The
approximately 300 km high VLVP has an areal extent of
1.8 � 107 km2 [Wang and Wen, 2004]. The shear wave
velocity drop associated with the VLVP is too large to
explain by thermal anomaly [Wen et al., 2001]. In addition,
the VLVP is spatially correlated with the geochemical
DUPAL anomaly [Wen, 2006]. Combination of these
observations indicate that the VLVP likely contains partial
melt, possibly distributed in an inhomogeneous manner, as
evident from a vertical gradient of the shear wave velocity
reduction [Wen et al., 2001; Wen, 2001; Wang and Wen,
2004].
[7] Secondly, a patchwork of thin, dense, low-viscosity

zones, termed ultralow-velocity zones (ULVZ) has been
observed on the mantle side of the Earth’s core-mantle
boundary [Rost et al., 2005; Williams and Garnero, 1996;
Wen and Helmberger, 1998; Hutko et al., 2009; Rost and
Revenaugh, 2003; McNamara et al., 2010; Thorne and
Garnero, 2004]. Where present, these structures are typi-
cally associated with large reduction of both S (25%–30%)
and P (8%–10%) wave velocities. Typically, the seismic
signature of the ULVZ has been explained by partial melting
[Williams and Garnero, 1996]. Results from laboratory
experiments, however, postulate that iron-rich high-pressure
phases can also explain some of the observed velocity
reductions [Wicks et al., 2010; Mao et al., 2006].
[8] Explaining the seismic signature of the ULVZ by only

iron-rich solids, however, is difficult to reconcile with a few
other seismic and experimental observations. Occurrence of
ULVZ beyond the stability field of iron-rich postperovskite
[Garnero and McNamara, 2008] indicates that such ULVZ

occurrences must be explained by other phenomena. Strong
iron depletion in magnesiowüstite in contact with outer core
liquid [Ozawa et al., 2008, 2009] implies that Mg0.16Fe0.84O
is not a stable composition for parts of ULVZ that might be
in direct contact with the outer core. High-pressure melting
experiments on fertile peridotites also indicate that ferro-
periclase and Ca-rich perovskite are likely to be molten and
in equilibrium with solid Mg perovskite under core-mantle
boundary conditions [Fiquet et al., 2010]. These experi-
mental results and numerical models [Stixrude and Karki,
2005; Stixrude et al., 2009] indicate that the silicate solidus
temperature at the core-mantle boundary is likely lower than
the geotherm. Partial melting in the ULVZ likely leads to an
iron-rich silicate melt hosted in a silicate matrix [Nomura
et al., 2011].
[9] If partially molten, dynamic processes operative within

the ULVZ depend strongly on the extent of melting. A
relatively large volume fraction of dense melt is difficult to
retain uniformly distributed within the rocky matrix [Hernlund
and Tackley, 2007], as the high-density melt will tend to
pool near the bottom. Hernlund and Jellinek [2010] sug-
gested stirring of the mushy ULVZ can prevent such a
gravitational drainage. Hier-Majumder et al. [2006] suggest
that capillary tension at grain-grain contact can reduce the
drainage efficiency of the melt in a macroscopic scale. In a
microscopic scale, matrix deformation arising from stirring
of the ULVZ can enhance melt segregation by grain bound-
ary wetting [Hier-Majumder et al., 2004; Hier-Majumder,
2011]. Dissolution-precipitation-driven healing, however,
can rehomogenize melt out of some grain boundary films,
reducing the gravitational drainage efficiency [Takei and
Hier-Majumder, 2009; King et al., 2011]. Finally, vertical
distribution of melt within the ULVZ can be reflected in the
vertical gradients of S and P wave velocities within the
ULVZ [Rost et al., 2006]. Inferring the extent of melting
from the seismic signature of the ULVZ is thus crucial in
understanding the internal dynamics of these structure.
[10] This article is organized in the following manner: We

present the governing equations for grain-melt geometry,
solution techniques, and the averaging scheme for the unit
cell in section 2. The results for grain-melt shape, relation-
ship between contiguity and melt fraction, and comparison
with previous studies is presented in section 3. Finally, we
discuss the limitations of our model, the role of melt com-
position, seismic signature of two- and three-dimensional
models, and the implications for melting in the VLVP and
the ULVZ in section 4.

2. Methods

[11] The semianalytical technique in this work models the
melt volume fraction, contiguity, and elastic properties
averaged over a unit cell, consisting of 14 grains arranged in
a FCC symmetry. Each grain in the unit cell is contiguous to
12 other grains, while the interstitial volume is saturated
with melt. The surface tension on each grain varies spatially
between grain-grain and grain-melt contacts. The spatial
gradient of surface tension excites a flow within the grains
and the interstitial melt. When the forces arising from pres-
sure, surface tension, and viscous deformation balance each
other, the steady state geometry is attained. Once the steady
state shape of each individual grain is derived from the
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governing equation, we populate the unit cell with identical
grains to calculate the melt volume fraction and contiguity.
[12] To systematically study the variation of contiguity

with melt volume fraction, we consider a reference unit cell.
In this reference unit cell, each grain, described by a unit
sphere, makes only point contacts with its neighbors. In this
configuration, contiguity is zero, and the volume fraction of
the interstitial space is approximately 0.26, the porosity of
FCC packed spheres. In partially molten rocks, this melt
fraction, termed the “disaggregation melt fraction,” or the
“rheologically critical melt fraction,” is marked by a sharp
reduction in viscosity [Scott and Kohlstedt, 2006]. Next, we
consider the influence of neighboring grains on each grain,
via surface tension, as a perturbation to this reference state.
As the perturbation increases, the grains become more
faceted, increasing the area of intergranular contact. Due to
faceting, it is possible to pack the grains into a smaller unit
cell, reducing the volume fraction of interstitial space. We
carried out a series of numerical experiments with different
extents of perturbation in each experiment. We then mea-
sured the melt fraction and contiguity in each experiment.
Finally, we fit the contiguity-melt fraction data to obtain a
relation between contiguity and melt volume fraction. This
section outlines the steps involved in this process.
[13] This work does not incorporate anisotropic grain

boundary energy and the influence of varying dihedral angle
on contiguity. We also assume that the physical properties of
each grain in the unit cell are identical, rendering the unit
cell monomineralic. We discuss the influence of anisotropy,
deformation, and different mineral and melt compositions on
inferred seismic signatures in section 4.1.

2.1. Governing Equations

[14] Consider a collection of grains in a partially molten
unit cell. We express the steady state shape of each grain as a
small perturbation from a sphere. The shape function Fk

describing the kth grain is given by,

Fk ¼ r � a 1þ � fkð Þ ¼ 0; ð1Þ
where fk is an unknown function, and the coefficient of
deformation, �, is a constant. The variable r is the radial
distance from the center of the grain. We notice that the unit
normal to the grain, n̂k , is given by Leal [1992],

n̂k ¼

D

FkD

Fkj j ¼ r̂ � �

D

fk : ð2Þ

where r̂ is the unit radial vector.
[15] In the reference state or zeroth order, velocities within

each grain and the melt phase are considered zero. The
pressure within each phase, however, has a nonzero zeroth-
order component. Within the kth grain (i = k) or melt (i = m),
total dynamic pressure pi

total, total velocity ui
total, and stress

tensors Ti
total are given by,

utotali ¼ �ui; ð3Þ

ptotali ¼ p0i þ �pi; ð4Þ

Ttotal
i ¼ �ptotali Iþ �mi

D

ui þ D

uTi
� �

; ð5Þ

where mi is the viscosity and I is the identity matrix.

[16] In the perturbed state, the coupled flow within each
grain and the melt are governed by the conservation of mass
and momentum within each particle and the melt. Each
particle and the melt are treated as incompressible viscous
fluids, leading to the first-order equations,

0 ¼ mir2ui � D

pi; ð6Þ

and

0 ¼ D

⋅ ui: ð7Þ

[17] To solve for the unknown velocities, pressures, and
shape functions, we need to impose two sets of boundary
conditions. First, the velocity is assumed to be continuous at
the interface of the kth particle, implying no-slip at this
interface,

uk Fk¼0 ¼ umj jFk¼0 : ð8Þ

Next, the continuity of traction across the interface Fk = 0
requires [Leal, 1992, chapter 5],

DTk⋅n̂k þ ~Dg � gn̂k

D

⋅n̂k
� � ¼ 0; ð9Þ

where DTk is the stress drop on the surface of the kth grain
and g is the interfacial tension. The surface gradient operator
~Dis defined as [Manga and Stone, 1995]

~D¼ l� n̂k n̂k
� �

⋅

D

; ð10Þ

where n̂k is the unit normal vector and
D

is the gradient
operator. The first term in the left hand side of the stress
jump condition, equation (9), is the differential traction
across the interface, the second term arises from the variation
of interfacial tension on a grain, and the third term arises
from curvature driven surface tension force. The normal
component of the stress jump condition is termed the
Laplace condition while the tangential component is termed
as the Marangoni condition [Hier-Majumder, 2008; Leal,
1992]. The total surface tension g can also be expressed as
a sum of the reference surface tension g0 and a perturbation
surface tension g1,

g ¼ g0 þ �g1: ð11Þ

The perturbation g1 arises from the alteration of the surface
properties due to contact with other grains. The nature of this
function depends on the packing geometry of the grains and
is discussed in section 2.3. Finally, the evolution of the
shape of the kth grain is governed by the kinematic relation
[Leal, 1992],

∂Fk

∂t
þ uk ⋅

D

Fk ¼ 0: ð12Þ

[18] Taken together, conservation equations (6) and (7),
the no-slip boundary condition (8), normal component of the
stress jump condition (9), and the kinematic condition (12)
can be used to solve for the first-order unknown velocity
ui, pressure pi, and shape perturbation of the kth particle
fk. First, analytical solutions to the velocity and pressure
fields are obtained using the technique of solid harmonics.
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Details of this technique are provided in Appendix A.
Once the velocity and pressure fields are obtained, those
solutions are substituted into the normal component of the
stress jump condition (9) to obtain a second-order partial
differential equation in the unknown shape perturbation fk.
The above equations were nondimensionalized by using,

pi ¼ miu0
a

p′i ; ð13Þ

ui ¼ u0u′i ð14Þ

r ¼ ar′ ð15Þ

g ¼ g0g′; ð16Þ

where u0 is a reference velocity, a is the grain size, and g0
is a reference value of grain-melt surface tension. The
nondimensional conservation equations, after dropping the
primes, are given by

0 ¼ r2ui � D

pi; ð17Þ

and

0 ¼ D

⋅ ui: ð18Þ

By analytically solving equations (17) and (18), as
explained in Appendix A, we obtain the governing equa-
tion for the perturbed shape function fk, in the steady state,

r2fk ¼ 2

g0
g1; ð19Þ

where g0 is a constant. As evidenced by equation (19), in
the steady state, only perturbation in the surface tension
controls the perturbed grain shape.

2.2. Packing Arrangement

[19] In the rhombic dodecahedron geometry, each grain
has a coordination number of 12. The grain is surrounded by
six other grains in its equatorial plane and three grains, offset
from each other, each on the layer above and below the
equatorial layer, leading to an A-B-C packing arrangement.
The diagram in Figure 1 outlines the coordination symmetry

of a rhombic dodecahedral grain. This packing arrangement
is used in the next section to prescribe the surface tension
distribution of each grain.

2.3. Prescription of Surface Tension

[20] Following the prescription of Takei [1998], we iden-
tify 12 contact patches on each rhombic dodecahedral grain,
where the perturbed surface tension is equal to g′gg, the
grain-grain surface tension, and is equal to g′gm everywhere
else:

g1 q;fð Þ ¼ g′gg � g′gm
� �X12

i¼1

hi qð Þgi fð Þ ð20Þ

where hi(q) and gi(f) are combinations of step functions in q
and f, the colatitude and the azimuthal angle in spherical
coordinates, respectively. The difference in the two values of
surface tension is used for the perturbation surface tension
since g1 is being added to the reference value of surface
tension. The step functions are used to model contact pat-
ches on the grain surface. This allows for equation (20) to be
separated into its q and f components. Multiple step func-
tions are used for each contact face to create the shape of a
rhombus [Wimert, 2011].
[21] To solve the partial differential equation in (19), we

expand both f and g1 in a series of spherical harmonic
functions, Yl

m(q, f) as

fk ¼
X∞
m¼0

Xm
l¼�m

fl;mY
m
l q;fð Þ ð21Þ

and

g1 ¼
X∞
m¼0

Xm
l¼�m

gl;mY
m
l q;fð Þ: ð22Þ

Applying the numerical prescription for g1 in equation (20)
and using the orthonormality condition of spherical harmo-
nics, we get the following equation for the coefficients gl,m

gl;m ¼ g′gg � g′gm
� �X12

i¼1

Z
q

Z
f

hi qð Þgi fð ÞYm∗
l q;fð Þ� �

sinq dq df;

ð23Þ

Figure 1. Packing arrangement of the grains. (a) An individual grain, with the areas of contact with other
grains in dark color. (b) The central grain in red is contiguous to 12 other grains, 6 along the q = p/2
plane (also shown in red), (c) 3 above at q ¼ sin�1

ffiffiffiffiffiffiffiffi
1=3

p� �
(shown in blue), and 3 below at an angle

of q ¼ p� sin�1
ffiffiffiffiffiffiffiffi
1=3

p� �
(shown in green).
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where the asterisk denotes complex conjugation. Taking the
spherical harmonic transform of equation (19), the coeffi-
cients in the expansion of f and g1 are related by,

fl;m ¼ � 2

g0l 1þ lð Þ gl;m: ð24Þ

Since hi(q) and gi(f) are known, the coefficients gl,m can be
calculated from (23), which we then insert into equation (24)
to obtain the coefficients in the expansion of the perturbed
shape function fk. Finally, combining equations (1) and (21),
we obtain the perturbed shape of the kth grain.

2.4. Calculation of Melt Volume Fraction
and Contiguity

[22] The melt volume fraction for the model was calcu-
lated from the geometry of the unit cell. As explained in
section 2.2, each grain is surrounded by six grains in the
equatorial plane (q = p/2), three grains above, and three
grains below the equatorial plane. Each layer of grains above
and below the equatorial plane are offset from each other,
leading to a FCC packing symmetry. If each grain was a
perfect, unit sphere, similar to the unperturbed state, cell
parameters a, b, and c of this unit cell would be equal to 2

ffiffiffi
2

p
.

Assuming the empty space between the grains is saturated
by melt, the melt volume fraction in this case would be 0.26.
[23] We calculated the area of nearly circular grain-grain

contact by measuring the radius of the contact. The radius,
w, and the shortening d, displayed in Figure 2, vary linearly
with the magnitude of the perturbation coefficient �,

d ¼ � 1� cos
q*

2

	 

; ð25Þ

w ¼ �sin
q*

2
; ð26Þ

where q* is the angle subtended by an arc of contact in the
cross section displayed in Figure 2. In the absence of per-
turbation (� = 0) both w and d are zero, rendering zero

contiguity at the disaggregation melt fraction. From the
numerical solution of varying fk on the surface of the kth
particle, the boundary of this circle is marked by the contour
of fk = 0, the line of zero perturbation.
[24] If the radius of the unperturbed sphere is shortened

by an amount d at the center of a contact face, then the
distance between the centers of two unit spheres is reduced
to 2(1 � d). Knowing the location of the centers of the
touching, flattened grains, we calculate the volume of the
unit cell. Next, we calculate the volume of each grain
numerically by using the software Paraview. The total vol-
ume of solids in each FCC unit cell is equal to 4 times the
volume of one individual grain (8� 1

8 corner grains + 6� 1
2

face centered grains = 4 grains). Thus, the melt fraction is
calculated assuming the void within the unit cell is com-
pletely saturated by melt.
[25] In successive numerical experiments, we varied the

parameter � between 0.1 and 1. For each of the runs, we set
the nondimensional surface tension parameters, ggm′ = 0.1
and ggg′ = 0.5. We carried out a total of 20 numerical
experiments. In all simulations, the magnitude of the maxi-
mum perturbation to the shape, was always O(10�2). These
maximum values of perturbations were associated with
flattened intergranular contacts and bulged melt-grain con-
tacts. The small values of perturbation justify the underlying
linear analysis, in which term O(�2) or higher were neglec-
ted. The data on contiguity and melt fraction from these
experiments were then fit with a polynomial function to
obtain a melt fraction-contiguity relation between melt
fractions of 0 and the disaggregation melt fraction.
[26] Once the numerical solution for the perturbed shape

functions are obtained, we calculated contiguity, y, of the
faceted grain as the sum of area fraction of the 12 contact
patches,

y ¼ 1

4p

X12
i¼1

Ai; ð27Þ

where Ai is the area of an individual patch.

Figure 2. A cross section in the x–y plane, displaying the relationship between the radius of the contact
face and the decrease in distance between grain centers due to flattening. By measuring q*, the value of d
and w are found using equations (25) and (26), respectively.
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2.5. Calculation of Seismic Velocities

[27] Once the contiguity and melt fraction for each
experiment was determined, we used the equilibrium
geometry model of Takei [2002] to calculate the effective
elastic moduli and seismic velocities of the partially molten
aggregate. In addition to the contiguity and melt volume
fraction, bulk moduli of the solid and the melt, shear
modulus and poisson’s ratio in the solid, and the ratio of
density between the solid and the liquid is required. For the
solid phase, these parameters were provided from the Pre-
liminary Reference Earth Model (PREM) at the core-mantle
boundary condition. We also assumed that the density of the
melt is equal to that of the solid under this condition
[Stixrude and Karki, 2005; Mosenfelder et al., 2007].
[28] We calculated the bulk modulus of melt from the

Vinet Equation Of State (EOS), relating pressure P to den-
sity r by the implicit relation [Poirier, 2000, section 4.5.2],

P ¼ 3K0
r
r0

	 
2
3 1� r

r0

	 
�
1

3

2
64

3
75exp 3

2
K′0 � 1
� �

1� r
r0

	 
�
1

3

2
64

3
75

0
B@

1
CA;

ð28Þ

where K0 is the bulk modulus, r0 is the density, and
K0′ = dK/dP is the pressure derivative of the bulk modulus at
P = 0. The bulk modulus at pressure P is obtained from the
EOS, by using the relation

K ¼ r
r0

	 

dP

d r
r0

� � : ð29Þ

To test the influence of different melt compositions, we
calculated the melt bulk modulus for midocean ridge basalt
(MORB) [Ohtani and Maeda, 2001; Guillot and Sator,
2007], peridotite [Ohtani and Maeda, 2001; Guillot and
Sator, 2007], MgSiO3 [Stixrude and Karki, 2005], and
Mg2SiO4 [Mosenfelder et al., 2007] melts. The values of
relevant constants and calculated values of pressure P, melt
density ratio r/r0, and melt bulk modulus K are presented in
Table 1. We tested the effect of melt composition via melt

bulk modulus on the seismic properties for fixed melt
fractions of 0.08, 0.1, and 0.12, respectively. Finally, we
used a bulk modulus of 555.28 GPa corresponding to that of
a peridotitic melt of Ohtani and Maeda [2001] to calculate
the seismic signature as a function of melt volume fraction.

3. Results

[29] This section outlines the model results. First, we dis-
cuss the solution to the shape perturbation function. Next,
the results for the melt volume fraction and contiguity in a
unit cell are discussed. Finally, we compare the melt fraction-
contiguity relation from our results with the results of three-
dimensional numerical simulation from von Bargen andWaff
[1986], two-dimensional model of Hier-Majumder et al.
[2006], and experimental measurements of Yoshino et al.
[2005].

3.1. Solutions for Grain Shape and Melt Geometry

[30] The surface of a single grain, colored by the magni-
tude of the perturbed shape function �f, is visualized in
Figure 3. Dark values indicate regions of flattening. Bright,
bulging patches represent contact with three different kinds
of melt units. Tubules are linear grain-melt contacts, located
between two dark intergranular contacts. Pockets are situ-
ated between four contiguous dark intergranular contacts
and at the intersection of four tubules. Finally, three tubules
meet each other at junctions, which are situated at the
intersection of three grain-grain contact patches. In this
geometry, each grain has a total of 6 pockets, 8 junctions,
and 24 tubules along the 24 edges of the rhombic
dodecahedron.

Table 1. Constants Used in Vinet Equation of State to Calculate
the Bulk Modulus of Melta

Midocean
Ridge Basalt

Peridotite
Melt

MgSiO3

Meltb
Mg2SiO4

Meltc

K0 (GPa) 18.1d 24.9d 10.1 115.0
15.5e 16.5e

K0′ 5.5d 6.4d 7.6 2.9
7.2e 7.2e

P (GPa) 135.99d 136.84d 135.99 136.04
136.17e 136.46e

K (GPa) 452.98d 555.28d 574.99 421.79
577.21e 583.44e

r/r0 2.40d 2.03d 2.28 1.74
2.13e 2.10e

aThe values of P and K were obtained using the constants from the first
two rows corresponding to the values of r/r0 reported in the last row.

bStixrude and Karki [2005].
cMosenfelder et al. [2007].
dOhtani and Maeda [2001].
eGuillot and Sator [2007].

Figure 3. Shape of a single grain, calculated from equation
(19) and colored by the value of �f. A positive f value (yel-
low and white) perturbs the initial sphere by pushing out,
while a negative f value (red and black) deforms the sphere
by pushing in and flattening the grain surface. The color
scale is the same as given in Figure 4. Contacts with melt
pockets, tubules, and junctions are marked on the grain.
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[31] Surface tension forces perturbation of the grain shape.
The color map in Figure 4 depicts the prescribed surface
tension and the resulting perturbation of the reference shape
in the q � f space. The accompanying colorbars indicate the
magnitude of the perturbation to both the prescribed surface
tension and the shape. Since the prescribed surface tension
assumes only two values, the color on Figure 4a is binary.
As indicated by the surface plot in Figure 3, negative relief
corresponds to regions of flattening. Tension on the inter-
granular contact flexes the grain surface inward while slight
bulges are produced at the grain-melt contact. It can also be
seen from Figures 3 and 4 that the contact patches given by
the shape function f are more circular compared to the
rhombus shaped patches of surface tension prescribed by
equation (20). These contact patches are similar to the direct
prescription of the patch geometry by Takei [1998].
[32] Figure 5 shows melt tubules, junctions, and pockets

that form around an individual grain for systems with dif-
ferent melt volume fractions. The melt volume fraction
increases from Figure 5a to Figure 5d from 0.06 to 0.22.
For clarity, two junctions and pockets are identified on
Figure 5a. The visualizations illustrate that as the melt
volume fraction increases, the melt tubules and pockets
grow larger, and the area of the circular grain-grain contacts
decreases. The contiguity in the visualizations decrease
from 0.38 in Figure 5a to 0.02 in Figure 5d. The values of
melt volume fractions and contiguity for all numerical
experiments are described in Table 2.
[33] We also compare the change in shapes of grains and

tubules as the melt volume fraction increases, in Figure 6,
depicting a melt tubule along with three grains. In this set of
visualizations, produced from the same simulations as in
Figure 5, melt volume fraction increases from 0.06 to 0.22.
The color map on the surface of the grains represent the

magnitude of the perturbed shape function. Two features of
the microstructure become clear as the melt volume fraction
increases. First, the area of tubule cross section increases
with an increase in melt volume fraction. Second, the grains

Figure 4. Surface map of (a) the prescribed surface tension and (b) perturbed shape of the grain. The two
surface maps are related by equations (19) and (24). Higher values of surface tension correspond to
negative values of �f and perturb the initial sphere by flattening the grain surface, while lower values
of surface tension correspond to positive values of �f and deform the sphere by pushing out the grain sur-
face (see Figure 3).

Figure 5. Melt tubules and pockets surrounding an indi-
vidual grain for four different melt fractions. Red coloring
represents grain-melt contact, and green coloring repre-
sents grain-grain contact. The melt volume fractions for
the given configurations are (a) f = 0.06, (b) f = 0.11,
(c) f = 0.14, and (d) f = 0.22.
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become less faceted and more round shaped. The color map
on the grain surface, corresponding to the shape perturba-
tion, becomes even as the melt fraction increases.

3.2. Melt Fraction and Contiguity in the Unit Cell

[34] In the perturbed state, the unit cell of the rhombic
dodecahedron is substantially smaller when compared to
an FCC packed unit cell of spheres. The surface plots in
Figure 7 visualizes a unit cell from two different orienta-
tions. In Figure 7a blue arrows indicate the unit cell vectors
in the FCC lattice. For a unit sphere, all three lattice para-
meters are equal to a uniform value of 2.82. In the perturbed
state, the distance between the centers of the contiguous
grains is reduced. In the case depicted in Figure 7, each unit
cell vector is reduced to a length of 2.61, indicating an
approximately 7.4% shortening in each direction. Such a
shortening leads to a denser packing of the unit cell. The
volume of the cell depicted in Figure 7 is 17.78, about 27%
smaller than a unit cell produced by touching spheres, whose
volume is 22.43. While the volume of each grain is about
4.19, the volume of a unit sphere. Since the volumes of the
grains remain nearly unchanged, flattening at intergranular
contacts reduces the available interstitial space. The volume
fraction of interstitial melt is 0.05, substantially smaller than
the interstitial melt volume fraction of 0.26 in the reference
unit cell.
[35] Both the melt volume fraction and contiguity varied

with a variation in �. Figure 8 illustrates the relationships
between � and melt volume fraction and contiguity. Melt
volume fraction varies nearly linearly with �, while conti-
guity varies with � in a nonlinear manner.
[36] The data on contiguity and melt fraction from our

numerical experiments are fitted with a fifth-order polyno-
mial of the form

y ¼ p1f5 þ p2f4 þ p3f3 þ p4f2 þ p5fþ p6: ð30Þ

To ensure that contiguity tends to unity at zero melt volume
fraction, we fixed p6 = 1 in equation (30). The coefficients

obtained from the fitting function are given in Table 3.
Measures for the goodness of the fit, sum of squared errors
and R2 are given by 1.67 � 10�4 and 0.9995, respectively.

3.3. Comparison With Previous Studies

[37] The contiguity-melt fraction relation from our work
can be compared with previous experimental and numerical
data. The plot in Figure 9 compares our results and the fit to
our data to the results from the model of von Bargen and
Waff [1986] for a dihedral angle of �30�. Also overlaid
on the plot are contiguity measurements from synthetic
midocean ridge basalt (MORB) and olivine bearing aggre-
gate and a fertile spinel lherzolite rock from Killbourne
Hole, New Mexico by Yoshino et al. [2005]. Notice that the
formula for solid-solid surface area in equation (8) of
von Bargen and Waff [1986] needs to be corrected by adding
a constant approximately equal to p, such that the plot of
their equation (8) matches their Figure 7. In the article, their
equation (8) erroneously indicates that the area of grain-
grain contact decreases to zero at zero melt fractions. The
results of von Bargen and Waff [1986] are only applicable
for small melt fractions (less than 0.05 melt volume fraction)
but the fit of the results are extrapolated with a dotted line for
higher melt fractions in the plot.
[38] In the same plot, our fit is extrapolated to zero melt

fraction with a broken curve. As the curves indicate,
between melt volume fractions of 0 and 0.02, our fit predicts
a contiguity slightly lower than that of von Bargen and Waff
[1986]. Between melt volume fractions of 0.02 and 0.12, our
model predicts a slightly higher value of contiguity than von
Bargen and Waff [1986]. Finally, our model predicts that

Table 2. Contiguity and Melt Fraction Measurementsa

� Melt Volume % Contiguity

1.000 5.45 � 0.27 0.418 � 0.009
0.953 6.58 � 0.24 0.379 � 0.007
0.905 7.69 � 0.21 0.342 � 0.006
0.858 8.79 � 0.18 0.307 � 0.005
0.811 9.86 � 0.16 0.274 � 0.004
0.763 10.92 � 0.13 0.243 � 0.003
0.716 11.97 � 0.11 0.214 � 0.002
0.668 12.99 � 0.09 0.187 � 0.002
0.621 14.01 � 0.07 0.161 � 0.001
0.574 15.01 � 0.06 0.137 � 0.001
0.526 15.99 � 0.04 0.116 � 0.001
0.479 16.95 � 0.03 0.096 � 0.001
0.432 17.91 � 0.02 0.078 � 0.000
0.384 18.84 � 0.01 0.062 � 0.000
0.337 19.77 � 0.00 0.047 � 0.000
0.289 20.68 � 0.18 0.035 � 0.000
0.242 21.57 � 0.02 0.024 � 0.000
0.195 22.46 � 0.02 0.016 � 0.000
0.147 23.33 � 0.03 0.009 � 0.000
0.100 24.18 � 0.03 0.004 � 0.000

aThe errors are associated with the variations in the numerical estimates
of the grain volume and area of grain-grain contact patches [Wimert, 2011].

Figure 6. Melt tubule and three grains for four different
melt fractions. The color scale represents the value of �f,
the perturbation in shape function. As the melt volume
fraction increases, the channel grows larger, and the area
of grain-grain contact decreases. The melt fractions for
the given configurations are (a) f = 0.06, (b) f = 0.11,
(c) f = 0.14, and (d) f = 0.22.
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contiguity becomes zero at a disaggregation melt fraction of
0.26, while von Bargen and Waff [1986] predicts a disag-
gregation melt fraction of 0.19. Our slightly higher estimate
of the disaggregation melt fraction agrees better with the
results of Scott and Kohlstedt [2006], who report a rheo-
logical transition coincident with loss of contiguity, that
takes place between melt volume fractions of 0.25 and 0.3.
Overall, the results from our model and that of von Bargen
and Waff [1986] are in good agreement. The similarity
between these two models become clearer when compared
with two-dimensional models and measurements. Both our
data and that of von Bargen and Waff [1986] predict a con-
tiguity lower than the measurements of Yoshino et al. [2005]

and the geometric model of Hier-Majumder et al. [2006].
The contrast increases further at higher melt fractions.
[39] The discrepancy between the two-dimensional mea-

surements and models and three-dimensional numerical
models primarily arises from the fact that two-dimensional
sections can underestimate the grain-melt contact area and
melt volume fraction. Hier-Majumder and Abbott [2010]
demonstrate that in a cubic grain with cylindrical tubules
along edges, a two-dimensional cross section underestimates
the volume fraction of melt by a factor of 3. The area of
melt-grain contact is underestimated by a factor of 6 in two
dimensions. As a result, when the two-dimensional data
from their model was corrected to three dimensions, the
contiguity decreased. Such corrections were not applied to
the two-dimensional geometric model ofHier-Majumder et al.
[2006] or the experimental measurements of Yoshino et al.
[2005, section 2.3].
[40] Natural and synthetic samples in the study of Yoshino

et al. [2005] display variations in grain size, surface ten-
sions, and mineral compositions, while both two- and three-
dimensional models of Hier-Majumder et al. [2006], von
Bargen and Waff [1986], and the current work assume
monomineralic and isotropic unit cells filled with uniform-
sized grains. Despite these differences, the two-dimensional
model of Hier-Majumder et al. [2006] and the experimental

Figure 7. A calculated multiparticle unit cell with a face-centered-cubic (FCC) geometry. The dimension
of the unit cell parameters a, b, and c is equal to 2.61, approximately 7.4% shorter than an FCC packed
with solid spheres, for which a = b = c = 2.82. The volume of the unit cell is 17.72, while the volume
of each grain is 4.19, leading to a melt volume fraction of 0.05. (a) The FCC unit cell with blue arrows
indicating the edges of the cubic unit cell. The green arrow points in the direction of the normal to each
close-packed plane. (b) A view of the unit cell along the close-packed planes.

Figure 8. Plots showing the effect � has on (a) melt volume
fraction and (b) contiguity. Increasing � results in greater
grain-grain contact area and a denser packing arrangement.
Notice how the relationship between � and melt volume
fraction is nearly linear, while the relationship between �
and contiguity is nonlinear.

Table 3. Parameters for Fit to the Contiguity (y) as a Function of
Melt Fraction (f)a

p1 p2 p3 p4 p5 p6

�8065.00 6149.00 �1778.00 249.00 �19.77 1.00
�9844.00 5022.00 �2033.00 224.50 �20.59 0.00
�6287.00 7275.00 �1522.00 273.50 �18.94 0.00

aThe fit is given by y = p1f
5 + p2f

4 + p3f
3 + p4f

2 + p5f + p6. The entries
in the second and third rows indicate the error bounds to the parameters
within 95% confidence bound. For the fit the values of the sum of
squared errors and R2 are 1.67 � 10�4 and 0.9995, respectively.
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measurements of Yoshino et al. [2005] uniformly overesti-
mate contiguity compared to the three-dimensional models.
We conclude that overestimation of contiguity in two
dimensions—rather than mineral chemistry, grain size dis-
tribution, and surface tension variations—exert a stronger
control on the melt fraction contiguity relation.

4. Discussion

[41] The result from this work bears a number of broader
implications for melting in the Earth’s deep interior. Using
our contiguity-melt fraction data, we demonstrate that the
seismic signature of the ULVZ at the core-mantle boundary
can be explained by a smaller extent of melting than a two-
dimensional microstructure would predict. We also provide
an estimate of melt volume fraction for the VLVP beneath
the South Atlantic and the Indian ocean. These topics are
discussed in this section.

4.1. Influence of Grain-Scale Variations

[42] In this section, we discuss the likely roles played by
crystal anisotropy, deformation, mineral composition, and
bimodal grain size distribution on the melt geometry.
[43] Similar to other poroelastic models [Walsh, 1969;

Watt et al., 1976; Takei, 1998; Mavko et al., 2003], our
calculations assume that the monomineralic unit cell is filled
with isotropic crystals of equal grain size. In addition, we do

not consider the role of an applied external stress on melt
segregation. Both crystal anisotropy and deformation lead to
preferential wetting or dewetting of grain-grain contacts.
Takei [2005] reports that dynamic wetting of grain bound-
aries and melt film formation due to an applied stress led to a
drop in shear wave velocity in an anisotropic manner. While
out of the scope of this present article, our semianalytical
method can be extended in future studies to address the issue
of crystal anisotropy. The underlying assumption of small
perturbations in this work, however, breaks down in the
presence of a large applied stress. Future studies on the
role of deformation in redistribution of melt microstruc-
ture, will need to involve numerical solutions using the
Boundary Elements Method (BEM) [Hier-Majumder, 2008;
Hier-Majumder and Abbott, 2010].
[44] In addition, distribution of different mineral grains in

multimineralic rocks can lead to asymmetric melt tubules.
For example, Zhu and Hirth [2003] discuss the variations in
the effective dihedral angle due to the variations in the
composition of surrounding grains of olivine and orthopyr-
oxene. Permeability of the partially molten aggregate, how-
ever, was practically insensitive to such variations in melt
tubule symmetry above melt volume fractions of 0.04.
According to the calculations of Zhu and Hirth [2003], the
effect of varying mineral composition is likely insignificant
within the range of melt volume fractions investigated in our
study.
[45] Bimodal grain size can influence the spatial distribu-

tion of melt under a hydrostatic condition of stress. Owing to
the high surface to volume ratio, Wark and Watson [2000]
argue, pockets of small grain size can drain melt out of
adjacent pockets of large grains by capillary tension. Such a
redistribution can lead to spatial variation of melt fraction,
and contiguity. If spatial distribution of pockets of differing
grain size is statistically random, then the isotropic unit cell
approximation is appropriate. In contrary, deformation can
lead to recrystallization of grains and impart a fabric to the
grain size distribution. Under such circumstances, our
assumption of a uniform unit cell is inappropriate. This
analysis, therefore, applies to partially molten aggregates
free of deformation fabric or anisotropy.

4.2. Influence of Melt Composition

[46] Melt composition influences the seismic signature of
a partially molten aggregate in two ways. First, the bulk
modulus of the melt, for a given volume fraction, varies with
the melt composition. Second, melts of different composi-
tions wet grain-grain contacts differently. In this section, we
discuss these two issues in context of our prediction of melt
volume fraction in the core-mantle boundary.
[47] The effective bulk modulus and the resulting drop in

P wave velocities, depend both on the volume fraction and
the composition of the melt. For realistic melt compositions,
considered in this study, the former exerts a stronger influ-
ence on seismic signature than the latter. The data in Table 4
list the relative drop in P wave velocity for melts of MORB,
peridotite, Mg2SiO4, and MgSiO3 compositions, for melt
volume fractions of 0.08, 0.1, and 0.12, respectively. Bulk
modulus of these melts, at core-mantle boundary pressure,
are listed in Table 1. The shear wave velocity drop is inde-
pendent of the bulk modulus of the melts. For the three melt
volume fractions of 0.08, 0.1, and 0.12 listed in Table 4,

Figure 9. Comparison between contiguity from this work,
the results of von Bargen and Waff [1986], the experimental
measurements of Yoshino et al. [2005], and the two-
dimensional model of Hier-Majumder et al. [2006]. The
results of von Bargen and Waff [1986] are limited to melt
volume fractions below 0.05, but the fit is continued to
higher melt fractions (dashed blue line). Extrapolation of
the fit to our data is also plotted (dotted light blue line).
The circular data points and the triangular data points indi-
cate measurements by Yoshino et al. [2005] of olivine-
midocean ridge basalt (Ol-MORB) and KLB, respectively.
The orange and dark blue curves represent the contiguity-
melt fraction relationships determined by the study of
Hier-Majumder et al. [2006] and von Bargen and Waff
[1986], respectively. The red data points are results found in
this study. The plot shows that two-dimensional models, and
experimental measurements dependent on two-dimensional
slices, result in higher values of contiguity than three-
dimensional models.
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DVS/DVS
0 values are 0.8, 0.76, and 0.71, respectively. For

melt volume fractions of 0.08 and 0.1, DVP/DVP
0 displays

1% compositional variability, which increases to 2% for a
melt volume fraction of 0.12. The mean value of DVP/DVP

0,
however, decreases by 3% with a 4% increase in the melt
volume. If we neglect the seismic signature of the Mg end-
member melts, peridotitic and MORB melts show 1% or less
variation in DVP/DVP

0, at any given melt volume fraction.
Thus, we conclude that melt volume fraction exerts a
stronger control on the seismic signature than the melt
compositions studied here.
[48] Small volume fractions of wetting melts mimic the

seismic signature of high-volume fractions of less wetting
melts. As a smaller area of intergranular contact is available
to mechanically support the skeletal framework, the effec-
tive elastic moduli are comparatively low for wetting melts.
For example, using the relations from von Bargen and Waff
[1986], for a melt volume fraction of 0.05, contiguity
decreases from 0.56 to 0.46 by decreasing the dihedral
angle from 60º to 20º. The same reduction in contiguity is
achieved, using our contiguity-melt fraction relation, by
increasing the melt volume fraction from 0.035 to 0.05.
Thus, the influence of wetting behavior on contiguity is
relatively modest, but not negligibly small. Future experi-
mental work and numerical models will be helpful in quan-
tifying this effect for three-dimensional microstructures.

4.3. Seismic Signature

[49] The contiguity of a partially molten rock, along with
the melt volume fraction, strongly influences the effective
elastic moduli. We discuss the reduction in elastic moduli
and seismic velocities by melting for a solid whose physical
properties are similar to the PREM model at the core-mantle
boundary. All calculations presented in this section consider
a peridotite melt composition, whose bulk modulus is
determined by using the constants from Ohtani and Maeda
[2001]. Figures 10a and 10b show the variation of the nor-
malized shear and bulk modulus of the partially molten rock
as a function of melt volume fraction and contiguity. As
expected, only the normalized shear modulus displays a
significant variation in Figure 10a. The response of the bulk
modulus to melting, in general, and contiguity in specific, is
caused by the more modest contrast between the bulk
moduli of the solid and the melt compared to the contrast
between their respective shear moduli. As the contiguity
decreases, grain surfaces become more wet and the strength

of the skeletal framework decreases. This results in lower
values of the shear modulus.
[50] Figure 10 also shows the variation of normalized S

and P wave velocities as a function of melt volume fraction
and contiguity. From the plot it can be seen that the S wave
velocity is much more sensitive to changes in contiguity and
melt volume fraction than are P waves. When increasing
melt fraction from 0.10 to 0.20, the normalized S wave
velocity is reduced from 0.75 to 0.40, while the normalized
P wave velocity experiences a more modest reduction from
0.90 to 0.80.
[51] Our three-dimensional model predicts a sharper

reduction in shear and P wave velocities compared to the
two-dimensional, geometric model of Hier-Majumder et al.
[2006]. The plots in Figure 11 compare the seismic veloc-
ity reduction between these two cases. The large variations
between these two sets of models can lead to very different
estimates on the degree of melting from observed shear and
P wave velocity drops. For example, the observed shear and
P wave velocity reductions between 0.70 to 0.75 and 0.90
to 0.92 in the ULVZ, can be explained by a range of
melt volume fractions between 0.08 and 0.12 using the
three-dimensional model. The two-dimensional model of
Hier-Majumder et al. [2006] predicts similar velocity drops
for much larger melt volume fractions. For example, a melt
volume fraction as high as 0.23 can be used to explain the
observed shear wave velocity reduction. As discussed ear-
lier, the discrepancy between the two estimates arise from
the overestimation of contiguity in the two-dimensional
models.

4.4. Implications for VLVP and ULVZ

[52] The seismic velocities from our calculations can be
used to constrain melting in the core-mantle boundary. The
plot in Figure 12 compares shear and P wave velocity
reductions as a function of melt volume fraction. Overlaid on
the plot are the ranges of shear (25% to 30%) and P wave
(8% to 10%) velocity reductions for the ULVZ and the range
of shear wave velocity reduction (2% to 12%) for the VLVP.
In the VLVP, the maximum Pwave velocity reduction is 3%.
[53] The seismic velocity reduction in the VLVP can be

explained by melt volume fractions of 0.01 to 0.05. This
variation in melt volume fraction corresponds to the near
linear decrease in shear wave velocity from the top to the
bottom of the VLVP [Wen et al., 2001;Wen, 2001;Wang and
Wen, 2004]. In other words, our calculations indicate that the
VLVP is marked by an increase in melt volume fraction from
0.01 near the top to 0.05 near the bottom. Such avertical
distribution of melt is consistent with capillary retention of
dense melt in a viscous, rocky matrix [Hier-Majumder et al.,
2006]. At small to modest melt volume fractions, strong
gradients of capillary tension prevent complete pooling of the
dense melt into a thin layer at the bottom of the partially
molten zone [Hier-Majumder et al., 2006; Hier-Majumder
and Courtier, 2011].
[54] In contrast to the modest melt volume fraction of the

VLVP, the ULVZ is marked by a larger volume fraction of
melt. As the plot in Figure 12 indicates, the range of the
combined shear and P wave velocity signatures of the ULVZ
can be matched by a melt volume fractions between 0.08 and
0.12. This estimate from our three-dimensional models are
substantially lower than the estimate by Williams and

Table 4. Comparison of P Wave Velocity Reduction (DVP/VP
0)

for Various Melt Compositionsa

Melt
Fraction

Midocean
Ridge Basalt

Peridotite
Melt

MgSiO3

Meltb
Mg2SiO4

Meltc

0.08 0.92d 0.92d 0.93 0.92
0.93e 0.93e

0.1 0.90d 0.91d 0.91 0.90
0.91e 0.91e

0.12 0.89d 0.90d 0.90 0.88
0.90e 0.90e

aBulk moduli of the melts are reported in Table 1.
bStixrude and Karki [2005].
cMosenfelder et al. [2007].
dOhtani and Maeda [2001].
eGuillot and Sator [2007].
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Garnero [1996], who, based on a melt inclusion model of
poroelasticity, concluded that a melt volume fraction of up to
0.3 is required to explain the velocity reductions in the
ULVZ, if the melt resides primarily in the tubules. As dis-
played in Figure 11, two-dimensional models of contiguity
also predict a similarly high meltvolume fraction based on
the shear and P wave velocity reductions.
[55] One important consequence of the lesser amount of

melting predicted by the three-dimensional model is the
reduction of the effective viscosity of the ULVZ. Laboratory
experiments on the stability of plumes [Jellinek and Manga,

2004] and a gravity current model of ULVZ spreading
[Hier-Majumder and Revenaugh, 2010] predict that the
ULVZ is likely two orders of magnitude weaker than the
ambient mantle. The large degree of melting predicted by
the two-dimensional model of contiguity, however, will
reduce the effective viscosity to values much lower than
these estimates.
[56] In a recent experimental study, Wicks et al. [2010]

proposed that the differential drop in shear and P wave
velocities similar to those in the ULVZ can be observed in
an Fe-rich magnesiowüstite (Mg0.16Fe0.84O) matrix. In a
previous work, Mao et al. [2006] suggested that an Fe-rich

Figure 11. Ratio of seismic velocities of a partially molten
rock to the seismic velocities in the absence of melting as a
function of melt volume fraction. The seismic velocities from
this study (solid lines) are compared to seismic velocities pre-
dicted by the two-dimensional study of Hier-Majumder et al.
[2006] (dotted lines).

Figure 12. Fractional decrease in seismic wave velocities
as a function of melt volume fraction. The red box marked
“VLVP” indicates the range of shear wave velocity reduc-
tion in the VLVP. The two boxes marked “ULVZ” represent
the P (blue) and shear (red) wave velocity reductions.

Figure 10. Plots of the changes in normalized shear and bulk modulus and the drop of seismic velocity of
the partially molten rock as a function of melt volume fraction and contiguity. The ratio between the effec-
tive bulk (K) and shear (G) moduli and solid bulk (K0) and shear (G0) moduli in a partially molten aggre-
gate as a function of (a) melt volume fraction and (b) contiguity. The ratio of seismic velocities of a
partially molten rock to the seismic velocities in the absence of melting as a function of (c) melt volume
fraction and (d) contiguity.
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postperovskite phase can also explain the observed reduction
in bulk sound velocity within the ULVZ. Three lines of
evidence suggest that only postperovskite or Mg0.16Fe0.84O
falls short of explaining the seismic signature of the ULVZ.
First, in a number of regions, the ULVZ has been detected
beyond postperovskite stability field [Garnero andMcNamara,
2008]. Second, a separate set of high-pressure experiments
indicate that magnesiowüstite in contact with outer core
liquid, will be strongly depleted in iron [Ozawa et al.,
2008], if not entirely consumed by outer core liquid
[Ozawa et al., 2009]. Finally, melting experiments on fertile
peridotites [Fiquet et al., 2010] indicate that ferropericlase
is likely the first phase to melt under core-mantle boundary
conditions, resulting in a ferropericlase and Ca perovskite
melt in equilibrium with Mg perovskite. Recent experi-
mental results from Nomura et al. [2011] report that a
transition in the spin state of Fe likely leads to a dense, iron
rich melts in the core-mantle boundary conditions.
[57] If a large volume fraction of Mg0.16Fe0.84O is some-

how stabilized in the ULVZ, its seismic signature can trade
off with the melt volume fraction. Using our contiguity-melt
fraction relationship, we calculated the seismic velocity
drops and effective bulk and shear moduli of the ULVZ, as a
function of the melt volume fraction and Mg0.16Fe0.84O
volume fraction in the solid. The color map in Figure 13
demonstrate the variations in normalized shear modulus,
bulk modulus, S wave velocity, and P wave velocity varia-
tions as functions of volume fractions of Mg0.16Fe0.84O and
melt. The effective bulk and shear moduli of the solids are
calculated from the Reuss bound of S and P wave velocities
and density of Mg0.16Fe0.84O and a solid of PREM compo-
sition. As suggested byWicks et al. [2010], in the absence of
melting, a volume fraction of 0.12 is required to explain the
observed reductions in the shear and P wave velocities. If the
solid composition is exactly similar to PREM, then

approximately 0.1 volume fraction of melt is necessary. The
composition of ULVZ for a given reduction in S and P wave
velocity drop can be explained by any points on the
corresponding contour lines in Figures 13c and 13d. As the
shape of the contours indicate, the composition can be
explained by a near linear tie line between the melted and
unmelted aggregates.

5. Conclusions

[58] We present a new three-dimensional, micro-
geodynamic model of contiguity in partially molten rocks. In
our model, the FCC unit cell contains 14 rhombic dodeca-
hedral grains. Our results extend the range of available
contiguity-melt fraction model from a melt fraction of 0.05
to the disaggregation fraction of 0.26. For a given melt
fraction, contiguity from our experiments is lower than the
contiguity from two-dimensional models and data. Conse-
quently, the three-dimensional model predicts a larger drop
in seismic velocities for a given melt fraction than two-
dimensional models. We also conclude that the variation in
volume fraction of melt exerts a stronger influence on the
seismic signature compared to varying the composition of
the melt between MORB and peridotite. In a partially molten
aggregate containing peridotite melt in a PREM solid, seis-
mic signatures of the two compositional anomalies in the
core mantle boundary—the VLVP and the ULVZ—can be
explained by melt volume fractions between 0.01 to 0.05
and 0.08 to 0.12, respectively.

Appendix A: Analytical Solution for Viscous Flow

[59] We build analytical solutions for the nondimensional
velocity and pressure fields within each grain and the melt
phase using vector solid harmonic functions [Leal, 1992,

Figure 13. Map of seismic signature as a function of volume fraction of Mg0.16Fe0.84O and melt.
Contour lines are overlaid on the color maps of (a) normalized shear modulus, (b) normalized bulk
modulus, (c) normalized shear wave velocity, and (d) normalized P wave velocity.
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chapter 4]. This technique is useful to construct solutions
from a characteristic vector or tensorial quantity. First, we
notice that the velocity of the melt phase, um can be
expressed as a function of dynamic pressure pm and an
unknown harmonic function vm(r2vm = 0), as

um ¼ 1

2
xpm þ vm; ðA1Þ

where x is the position vector. Such a prescription of
velocity guarantees that the nondimensional momentum
conservation equation, (17), is automatically satisfied.
[60] The next step is to build the harmonic function vm

from a characteristic vector d relevant to the system. This
vector should be constant, but, as we demonstrate, this
vector does not appear in the steady state equation for shape
function. One possible choice of this vector can be the dis-
placement vector between the centers of two particles.
Finally, we build the solution vector within the grain using
growing harmonics (only positive powers of r, the distance
from the center), while using decaying harmonics (negative
powers of r) to build the solution outside the grain. Notice
that the nature of harmonics in this analysis is opposite to
those in the work of Hier-Majumder [2011], as the origin
was fixed within a melt pocket in that analysis.
[61] With these considerations in mind, we build the test

solution for the harmonic functions vm, vg, pm, and pg as, )as

vm ¼ a1
x d ⋅ xð Þ

r5
� d

3r3

	 

þ b1

d

r
ðA2Þ

pm ¼ c1
x ⋅ d
r3

ðA3Þ

vg ¼ a2 x d ⋅ xð Þ � r2d
� �

; ðA4Þ

pg ¼ c2d ⋅ x; ðA5Þ

where a1, b1, c1, a2, and c2 are unknown constant coeffi-
cients. We use mass conservation equation for both phases,
the normal, and tangential components of the no-slip
boundary condition to obtain the relations,

a1 ¼ 9a2

8
ðA6Þ

b1 ¼ � 5a2

8
ðA7Þ

c1 ¼ � 5a2

4
ðA8Þ

and

c2 ¼ �a2: ðA9Þ

Finally, we substitute the melt velocity from equation (A1)
at r = 1, into the nondimensional kinematic condition in the
steady state to eliminate a2 and obtain,

r2F ¼ 2g1
g0

: ðA10Þ
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