
Ph.D. Candidacy Prospectus

Methods for Block Preconditioning the Navier-Stokes

Equations

Robert Shuttleworth

December 7, 2004



1 Motivation

The main goal for this project is to develop new preconditioning techniques for the incom-
pressible Navier-Stokes equations. The objectives of these techniques are to:

1. develop fully implicit, robust, scalable algorithms, and

2. overcome the computational bottlenecks that arise in the current solution of large
scale fluid flow simulations.

The hypothesis being tested is that it is possible to use information about the underlying
physical problem to more robustly and efficiently solve the linear subproblems that arise
from temporal and spatial discretizations in fluid flow simulations.

The new algorithm will implicitly solve the incompressible Navier-Stokes equations using
efficient, scalable and robust preconditioning techniques. Moreover, these techniques are
based upon using the solution of certain subproblems as building blocks to solve the coupled
Navier-Stokes equations.

2 Background

The robust solution of partial differential equations (PDEs) is of vital interest in technology,
engineering and national security. Scientific interest in computational fluid dynamics (CFD)
includes the desire to model physical fluid phenomena that cannot be easily simulated or
measured with a physical experiment. More specifically, incompressible flows are useful
for modeling diverse phenomena such as, combustion, pollution, chemical reactions, and
manufacturing processes. These flows can be modeled using the Navier-Stokes equations:

αut − ν∇2u + (u · grad)u + grad p = f (1)

subject to the incompressibility constraints:

−div u = 0

where u is the velocity of the fluid, ν the viscosity, and p the pressure. The value α =
0 corresponds to the steady-state problem and α = 1 to the transient case. A stable
finite element or finite volume discretization and corresponding linearization (via Picard or
Newton iteration) of the Navier-Stokes equations leads to a linear saddle point system1 of
equations of the form:

A =
[
F BT

B 0

] [
u
p

]
=

[
f
0

]
(2)

where F is the convection diffusion operator, BT is the gradient operator, and B is the
divergence operator. The linear system found in (2) must be solved at each step. The cost
for solving this system can be very high, and takes upwards of 80% of the CPU time for a
given simulation. Therefore, reducing this CPU time will allow scientists and engineers to
pose and solve more realistic problems. One way to reduce this computational time is by
coupling iterative solvers with preconditioners to solve (2).

1Note: Saddle point systems of this form are also found in electrical networks, structural networks,
optimal control problems, and computer graphics.

1



Over the years, numerous techniques have been developed to efficiently solve saddle point
linear systems (2) and the Navier-Stokes equations (1), examples of which can be found in
([1],[2], and [5]). However, these methods have many shortcomings, i.e. they decouple the
two equations, converge slowly, or only work well for small time steps.

3 Solution Methods

Modeling realistic types of fluids problems, in three dimensions, with the associated chem-
istry and physics requires a robust set of efficient and massively parallel algorithms. For
challenging problems in scientific computation, preconditioning is the most crucial com-
ponent in developing efficient and robust solution techniques. Furthermore, the ability to
transform problems that appear intractable into ones that can be approximated rapidly,
are of paramount interest.

3.1 General Preconditioning Techniques

To understand the need for preconditioners, we will first examine solving a linear system,
Ax = b. Direct methods, such as Gaussian Elimination, are expensive in terms of opera-
tion counts and memory as the problem size grows. Large multiphysics simulations, with
hundreds of million unknowns, are intractable with direct methods. Currently, iterative
techniques, such as Krylov subspace methods, are the only available option to solve these
types of problems. These techniques use far less CPU memory and operations than direct
methods. However, iterative methods are not as reliable as direct methods, nor do they
always converge to a solution.

Preconditioners are commonly used to increase the reliability and performance of it-
erative techniques. In brief, preconditioning refers to the process of transforming a linear
system, Ax = b, into another Âx = b̂, that has better properties with respect to the iterative
solution strategies. In many cases, the preconditioning matrix is designed to improve the
spectral properties of the original matrix. In other words, if Q is a matrix that approximates
A, then

Q−1Ax = Q−1b

has the same solution as the original system, Ax = b, but should be easier to solve than Ax =
b. This idea of transforming a problem from one that is hard to solve to one that is easier is
not a new concept. For example, Jacobi (1845) used the concept of preconditioning when
he was calculating planetary distances. However, the term preconditioning was not coined
until Turing (1948) in a paper about roundoff error. A major computational breakthrough
came in the 1970s when Meijerink and van der Vorst discovered the incomplete Cholesky
Conjugate Gradient method [11].

Today, there are two major types of preconditioners, general and problem specific. Gen-
eral preconditioners include incomplete factorization (ILU), sparse approximate inverses,
and, to some extent, domain decomposition, and multilevel multigrid techniques. However,
these methods have many drawbacks. For example, incomplete factorization techniques do
not parallelize well and are not scalable, while sparse approximate inverse techniques are
not robust. The domain decomposition technique, which refers to the idea of breaking a
computational domain/mesh into smaller domains that can then be preconditioned with
an ILU or sparse approximate inverse technique parallelize well, but the requirement that

2



coarse grids be handled by direct methods causes it to scale poorly as the problem size
increases. Newer techniques, based on multilevel multigrid-like methods show promise, but
there are still many open questions about them[10].

3.2 Preconditioning Techniques for the Navier-Stokes Equations

Problem specific preconditioners use the underlying physical problem as motivation for
the derivation of the methodology. Our focus is on preconditioning techniques for the
Navier-Stokes equations. Historically, there are many solution techniques for the Navier-
Stokes equations. These include fractional step methods, fully decoupled methods, and
fully coupled methods. The fractional step methods, such as pressure projection or operator
splitting ([1]), and the fully decoupled techniques, such as SIMPLE (Semi-Implicit Method
for Pressure Linked Equations) and SIMPLER ([2], and [3]), do not preserve the coupling
of physics, while the fully coupled convection-diffusion techniques do ([4],[5] and [6]). For
our purposes, we will focus our discussion to two solution branches, mainly fully decoupled
techniques, and pressure convection-diffusion preconditioners.

The SIMPLE algorithm begins by solving the momentum equation, then the continuity
equation is solved to calculate the pressure component. In turn, this value is used to
update the velocity component. An alternative derivation of SIMPLE, (in matrix form)
can be seen from the LDU decomposition of (2). In the case of SIMPLE, the L and the D
are grouped together. Then the corresponding preconditioner is of the form: U−1(LD)−1.
The derivation is as follows:[

F BT

B 0

]
=

[
I 0

BF−1 I

] [
F 0
0 S

] [
I F−1BT

0 I

]
(3)

=
[
F 0
B S

] [
I F−1BT

0 I

]
≈

[
F 0
B Ŝ

] [
I F̂−1BT

0 I

]
(4)

where S = −BF−1BT , F̂ = diag(F ), and Ŝ = −BF̂−1BT 2. Then, a preconditioner can
be defined using the inverse of the right hand side:

([
F 0
B Ŝ

] [
I F̂−1BT

0 I

])−1

=
[
I F̂−1BT

0 I

]−1 [
F 0
B Ŝ

]−1

(5)

=
[
I −F̂−1BT

0 I

] [
F 0
B Ŝ

]−1

(6)

[3]. The strategy has many shortcomings. For example, the choice of F̂ = diag(F ) works
well for small time steps, but is inefficient for small mesh sizes or convection dominated
flows. Furthermore, these methods are based upon decoupling the Navier-Stokes equation
which can lead to slow convergence because the coupling of physics is violated.

The fully coupled pressure convection-diffusion preconditioners are insensitive to mesh
size, time step, and CFL number. For stationary problems, there is a slight dependence on
Reynolds number, while transient problems have no Reynolds number dependence. Com-
putationally, this preconditioner can be implemented as:

P =
[
F−1 0
0 I

] [
I −BT

0 I

] [
I 0
0 −S−1

]

2The Schur complement cannot be computed explicitly because its a full dense matrix, therefore its in-
tractable for these types of problems.

3



where S is the Schur complement. From this decomposition, one can see that it takes two
difficult operations to apply this preconditioner. These are that S−1 needs to be applied
to a vector in the pressure space and F−1 needs to be applied to a vector in the velocity
space. So a good preconditioner in this family will make good approximations to S−1 and
F−1. In the case of this preconditioner, the application of F−1 can be with a multigrid
iteration ([10]), which is inexpensive. However, the choice of the approximations to S−1

are less straightforward. We are considering several methods. One of these is based upon
defining an operator, Fp, that is defined on the pressure space (analogous to the convection
diffusion matrix, F , that is defined on the velocity space) [4]. Another method, found in
[5], approximates the Schur complement by removing the action of the inverse of F from
the inside of the Schur complement. Both of these methods also have many open questions,
such as the form of the preconditioner for stabilized finite element discretizations.

In preliminary work under the direction of my advisor, Dr. Howard Elman, along
with Vicki Howle and Ray Tuminaro of Sandia National Laboratory, we have implemented
(in C++) a few Navier-Stokes preconditioners from the branches described above. Fur-
thermore, we have coupled this parallel code to MPSalsa, a massively parallel, chemically
reactive fluid flow code. In preliminary work, a number of serial and parallel trials have
been run for the lid driven cavity problem over a range of Reynolds numbers.

−1

0

1

−1

0

1
−3.4

−3.3

−3.2

−3.1

−3

pressure field
Streamlines: uniform

Figure 1: Lid Driven Cavity - This example represents flow in a square cavity with the
top of the lid moving from left to right. The boundary conditions are u = 0 on ∂Ω except
u1(x, 1) = 1 at the top of Ω.

There are many computational issues involved in efficiently implementing these types
of techniques while mitigating the computational bottlenecks. The high performance com-
puting issues that we will focus on include message passing, storage and partitioning of
sparse matrix operators, and memory management. To implement these techniques for
use in massively parallel environment, the message passing interface (MPI), [9], will be
used to handle the communication between processors. Efficient techniques to store the
sparse matrix operators can be found in [7]. While methods for partitioning matrices for
parallel computations or multilevel multigrid solutions can be found in [8]. All of these
techniques are beneficial to building a robust, valid, and efficient block preconditioner for
the Navier-Stokes equations.

The remaining steps for developing a robust, scalable software package for the incom-
pressible Navier-Stokes equations are:

1. Theoretical: The methods described above have been developed for stable spatial
discretizations. However, many production level codes (including MPSalsa) use an

4



explicit stabilization procedure. Therefore, the saddle point matrix becomes:[
F BT

B −C

]
.

So, appropriate techniques need to be developed for other preconditioners in the
pressure convection-diffusion family. These techniques also need to be expanded to
handle more general models that include, mainly temperature or chemistry. Currently,
problems have only been tested with enclosed flow, we would like to expand this to
cover more realistic test problems, including those with inflow and outflow capabilities.

2. Software: The code will need to be modified to handle stabilized meshes and other
models, including temperature or chemistry. This will allow us to link our code to
Fuego, a fire prediction code developed at Sandia National Laboratory. We will also
test these techniques on spectral element spatial discretizations. Finally, we will create
an additional portion of code that automatically generates the Fp preconditioner,
therefore making it easier for users to use these techniques.

3. Validation/Testing: With a project this size, it is vital that the methods are accurate
and working properly. Benchmark test problems will be chosen that test many fea-
tures of realistic, harder flows, including inflow/outflow and singularities. This will
aid in determining the extent to which these preconditioners provide accurate results.

References

Area of Specialization: Preconditioning the Navier-Stokes Equations

[1] A.J. Chorin, A numerical method for solving incompressible viscous problems, Journal
of Computational Physics, 2:12-26,1967.

[2] S.V. Patankar, Numerical heat transfer and fluid flow, Hemisphere Pub. Corp., New
York, 1980, pg. 124-135.

[3] M. Pernice and M.D. Tocci, A multigrid-preconditioned Newton Krylov method for
the incompressible Navier-Stokes equations., SIAM J. Sci. Comput. 123:398-418, 2001.

[4] D. Kay, Loghin, D. and A.J. Wathen, A preconditioner for the steady-state Navier-
Stokes equations. SIAM Journal of Scientific Computation 24:237-256, 2002.

[5] H. C. Elman, D. J. Silvester and A. J. Wathen, Finite Elements and Fast Iterative
Solvers, Oxford University Press, to appear. Chapters 3,4,7, and 8.

[6] H. C. Elman, V. E. Howle, John Shadid and Ray Tuminaro, A parallel block multi-
level preconditioner for the 3D Incompressible Navier-Stokes Equations. Journal of
Computational Physics 187:504-523, 2003.

Related Area: High Performance Computing

[7] J. Dongarra, A. Lumsdaine, X. Niu, R. Pozo, and K. Remington. “A sparse matrix
libray in C++ for high performance computing architectures,” Proceedings of the
Second Annual Object-Oriented Numerics Conference, 1994.

5



[8] G. Karypis and V. Kumar. “A Coarse-Grain Parallel Formulation of Multilevel k-way
Graph Partitioning Algorithm,” SIAM Conference on Parallel Processing for Scientific
Computing,

[9] The MPI Fourum. MPI:Message Passing Interface Standard. University of TN, 1995.

Related Area: Sparse Linear Systems

[10] U. Trottenberg, C.W. Oosterlee, and A. Schüller, Multigrid, Academic Press, San
Diego, 2001. Chapters 2 and 6.

[11] J. Demmel, Applied Numerical Linear Algebra, SIAM, 1997. Chapter 6.

4 Relevant Coursework

In this project, I will be developing a software package for block preconditioning the Navier-
Stokes equations. My approach requires knowledge of techniques in mechanics, numerical
linear algebra, and finite element/finite difference methods.

4.1 Relevant Science Courses

Science Courses have been chosen to provide “a foundation in my discipline.” Therefore,
courses in engineering and applied mathematics that achieve this goal are:

• ENME 670 - Mechanics of deformable bodies, deformation and strain measures, kine-
matics of continua with global and local balance laws. Thermodynamics of continua
and an introduction to constitutive theory for elastic solids and viscous fluids.

• ENME 677 - Field equations and constitutive laws for linear elasticity, linearized
boundary value problems, biharmonic equation, Airy stress function, Saint-Venant’s
principle, thermoelastic problems, and the Boussinesq problems.

• AMSC 698A (Computational Fluid Mechanics) - Techniques for discretizing the Navier-
Stokes Equations; pressure Poisson solvers; voriticity formulation, projection meth-
ods, implict and explict numerical formulations.

4.2 Relevant Mathematics Courses

Mathematics courses have been chosen to provide exposure to “computational methods and
mathematical modeling.” Application courses that enhance my knowledge of numerical
linear algebra, and computational methods and modeling in mechanics are:

• AMSC 698I (Numerical Methods in Math Finance) - Discrete models, The Black-
Scholes Model, Finite Difference Methods, Finite Element Methods, and Levy Pro-
cesses and Partial Differential-Integral Equations.

• AMSC 660 - Monte Carlo simulation, numerical linear algebra, nonlinear systems and
continuation method, optimization, ordinary differential equations.

• AMSC 661- Fourier and wavelet transform methods, numerical methods for elliptic
partial differential equations, numerical linear algebra for sparse matrices. Finite
element methods, numerical methods for time dependent partial differential equations.

6


