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Research Goals

The main goal of this research is to develop a new algorithm for determining the three di-
mensional conformation that yields the lowest potential energy of a protein. The goals of this
algorithm are to:

1. make use of the existing data in the Protein Data Bank (PDB) to aid in predicting the
lowest energy conformation for proteins with unknown structure, and

2. overcome the most severe computational bottlenecks from which current algorithms for
solving this problem suffer.

The hypothesis being tested is that it is possible to use known tertiary structural informa-
tion about a protein to determine the same information for other proteins that share common
subsequences of amino acids. A further goal is to determine to what extent the amino acid se-
quences of the different proteins must match in order to guarantee the accuracy of such structural
predictions.
The new algorithm will minimize the potential energy of a protein over all possible confor-

mations, given the lowest energy conformation of another protein and a continuous function
mapping the molecular compositions of the two proteins. The proposed algorithm is derived
from a class of computational techniques called homotopy methods, and will be referred to as
such from this point forward.

Background

Milestones in experimental research in protein structure include the sequencing of insulin (Sanger,
1953), determination of the structure of myoglobin via X-ray crystallography (Kendrew, 1961),
and determination that the lowest energy conformation of ribonuclease is its native conforma-
tion, i.e. the shape in which it performs its function properly (Anfinsen, 1961). The results of
these experiments led Vanderkooi, et. al., in 1966, to embark on using computation and simu-
lation to predict the native conformation of a protein from its amino acid sequence. After four
decades of similar work by mathematicians, statisticians, computational biologists and chemists,
and computer scientists, the goal of those first computational predictions — to solve the protein
folding problem — still eludes researchers, despite the prominence of the problem in the area of
computational biology.
Any useful description of all possible conformations for a protein exceeds the capacity of

contemporary computational resources; using the approximation of three possible conformations
per residue (alpha-helix, beta-sheet, and coil), a 100 residue protein would have 3100 (about
1047) possible conformations. With a teraflop-class computer (1012 floating point operations per
second), a direct search of all conformations for the one with lowest energy would take at least
1035 seconds ≈ 1023 years. (To put this in perspective, an estimate of the present age of the
universe is 1010 years.)
There are currently three major computational approaches to solving the protein folding

problem: molecular dynamics simulations, bioinformatics, and potential energy minimization.
Molecular dynamics simulations concentrate on the force balance of the atoms within a protein
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and the resulting (Langevin) dynamics, which are approximated by a stochastic differential equa-
tion. Bioinformatics, or the development of knowledge-based approaches to solving problems in
the biological sciences, refers to the use and analysis of experimental protein data for predicting
conformations for which no experimental results exist. Threading of homologous proteins (i.e.
determining the most probable structure by statistically matching small sections of the protein
to sections of slightly different, or homologous proteins with known structure) has been the most
successful and widely implemented of the bioinformatics approaches to date. The last approach,
potential energy minimization, refers to global optimization techniques which attempt to find
the conformation with lowest potential energy by minimizing a model of the potential energy of
the protein. Simulated annealing, genetic algorithms, branch-and-bound methods, smoothing
methods, and gradient-based methods are several of the more well-studied of the minimization
methods.
A very good introduction to the protein folding problem along with details and citations of

implementation of the most important algorithmic contributions to the protein folding problem
can be found in [3]. Detailed biological descriptions of proteins and the energetics involved in
the folding of a protein can be found in [2, 4].
It is possible to assess the performance of protein structure prediction algorithms by direct

comparison of the results with experimentally determined structure, so that in principle, progress
can be accurately measured. The need for effective methods has recently become much more
pressing: many of the proteins coded for in newly sequenced genomes are of unknown function.
Effective means of predicting structure would be a major aid to establishing function.
Since 1994, systematic community-wide assessment of prediction methods (known as CASP)

has provided a wealth of information on the strengths and weaknesses of existing approaches.
Data from this assessment show that the community is a long way from finding a general solution
despite substantial progress being made in many areas of protein structure prediction. Further-
more, although existing methods are improving, there are a number of serious computational
bottlenecks.
Five CASP experiments have now been completed, spanning the period from 1994 through

2002. Analysis of these data shows that when two proteins share clear sequence homology,
their tertiary (three-dimensional) structures are similar. CASP data show that the accuracy of
modeling is limited by two factors: obtaining a correct alignment between the target protein
sequence and that of available template structures, and refining an initial model obtained by
copying the template. There was some improvement in alignment quality between CASP1 and
CASP2, but no detectable progress since. Furthermore, there has been no progress in the
development of refinement techniques, and conventional molecular dynamics approaches have
failed. These are some of the areas where the most important open problems lie.
Several potential energy models (sometimes referred to as force fields) have been developed

for macromolecular systems and specifically protein systems. Some of the more commonly used
models used for protein analysis include AMBER, CHARMM, ECEPP/3, GROMOS, and MM3.
Details of the AMBER force field, a characteristic example of these models, can be found in [1].

Research Methods

The potential energy minimization problem is quite difficult: there are many variables (the posi-
tion of each atom in the protein) and a multitude of local minimizers that are far from the global
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minimizer. However, to determine the structure of a protein given one with known structure,
the relationship between the two proteins can be exploited by using the known structure as a
starting point for determining the unknown structure.
A class of computational techniques called homotopy methods [6, 8] will be used in order to

implement this idea. Homotopy methods, or in general continuation methods, have been used
in the past in computational bioscience research for exploring potential energy surfaces [5] and
as part of a smoothing method for protein structure prediction [7, 9] .
The idea of using a homotopy method for solving the protein folding problem is to create a

homotopy function that maps the properties (chemical composition and electrostatic properties)
of a template amino acid into a target one. Using this function, a sequence of (imaginary) amino
acids can be found, starting with the template and ending with the target, with the intermediate
amino acids being slightly changed from the one ahead of it. The conformation of an amino
acid in the sequence should usually be a small change from the conformation of the one before
it, and thus a very inexpensive computational problem.
One potential drawback of this technique is that there could be discontinuous changes when

two rather different conformations suddenly become nearly equal in energy. Both conformations
should be considered, and the machinery of homotopy methods (tracking singularities in the
Jacobian matrix) gives hope of being able to track these cases, even when many of these such
cases arise during a computational run.
Rather than using this on single amino acids, as in some free energy perturbation calculations,

a template protein will be continuously deformed into a target one, developing a homotopy that
allows insertions, deletions, and substitutions. Successful development of a stable algorithm
will require choosing a step size strategy (a priori estimates, adaptive steps, etc.), deriving the
appropriate terms to be parameterized in the homotopies, and choosing a sufficiently smooth
homotopy to guarantee convergence from the template to the target protein.
In preliminary work under the direction of my advisor, Dr. Dianne O’Leary, and Dr. Ron

Unger, I implemented a homotopy method for determining the configuration of a chain of mono-
valently charged (±1) particles using a simplified AMBER force field, including only the terms
modeling the potential energy of interactions between non-bonded atoms:
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where X ∈ R
3m are the Cartesian coordinates of the m particles in the chain and rij is the Eu-

clidean distance between particles i and j. The terms in Ecoul represent the pairwise Coulombic
interactions (with charges qi, qj), and the terms in Evdw represent the pairwise van der Waal
interactions via a Lennard-Jones 6–12 potential. The values εij and σij are the minimum po-
tential energy and sum of van der Waal radii, respectively, for the pair of particles i and j.
Although this is a simplified model of the interactions found in proteins, it can model several
of the characteristics of protein interactions that cause the most difficulty for optimization al-
gorithms, namely the multitude of local minimizers separated by high energy barriers. This
type of simplification has been used by other researchers (see [9]; Gockenbach, et. al. 1994
for examples). There are also several other instances of protein structure prediction using the
AMBER force field (e.g., [7]), so this seemed like a suitable choice for an initial model.
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Given the conformation of a template chain (a chain whose lowest energy conformation is
known), several of the charges on the particles in that chain were changed to produce a target
chain. The homotopy method was then applied to use the lowest energy conformation of the
template chain to predict the lowest energy conformation of the target chain. Results show that
the homotopy method proves to be quite robust, clearly outperforming the current state-of-the-
art general minimization algorithms when more than 50% of the charges differed between the
template and target chains, and matching the results of those algorithms when less than 50%
of the charges differed. My plan is to extend this work to proteins.
The remaining steps for developing a general homotopy method for protein structure pre-

diction include the following:

1. Creating a generic software interface for the potential energy function to be minimized. By
using a generic interface, several different energy models can be tested and used. This will
allow the homotopy method to be independent of the energy model, with the advantage
being that future improvements in energy models can be incorporated into the method
without any modifications to the core algorithm.

2. Creating a software interface to the Protein Data Bank. With over 50,000 known protein
structures, the PDB will be used as the primary resource for template proteins. Creating
a two-way data exchange interface to the PDB will provide a mechanism for exchanging
data between a conformational prediction tool (the homotopy method) and visualization
tools that use data in the PDB format.

3. Developing the homotopy tracing algorithm. Choices for path tracing algorithms include
the standard ordinary differential equation (ODE) solvers (implicit Euler, Runge-Kutta,
etc.) and predictor-corrector methods (using an ODE solver step for the for the predictor
step and an optimization algorithm for the correction step). The choice of the potential
energy model will influence the choice of path following algorithm as well as the choice of
molecular properties to be parameterized and choices of homotopy, step size, and initial
point to be used. Numerical stability and convergence analyses of the algorithm will be
performed for each of the models included in the research.

4. Validating the method. Pairs of proteins will be selected from the PDB as template and
target proteins and the homotopy method will be applied to predict the tertiary structure
of the target proteins. The proteins will be chosen such that a full range of the percentage
of changes in sequence will be covered in the experiments. This will aid in determining
the extent to which the homotopy method can guarantee accurate results.
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