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The problem we address is how to efficiently construct and normalize

covariance operators for meteorological data assimilation.

Covariances of what?

Spatial covariances of ‘background’ (forecast) error

What properties do the covariances possess?

Smoothness, self-adjointness, negligible amplitude at large separation.

Why are they needed?

The statistically optimal prescription of the assimilation is a generalized

‘Least Squares’ state in which the new observations and the background

are weighted by their respective ‘precisions’, or inverse-covariances.

Introduction
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SUMMARY OF EQUATIONS FOR

VARIATIONAL ANALYSIS

Using notation that, since Ide et al. (1997)

has become rather standard, the variational

statement of a meteorological optimal anal-

ysis is to seek the gridded state variable x

that minimizes the cost function

L(x) =
1

2
(xb − x)TB−1(xb − x)

+
1

2
(yo − Hx)TR−1(yo − Hx).

One of various ways of expressing the solu-

tion when the observation operator H is lin-

ear is as follows:
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xa = xb + BHT f ,

Qf = d,

where,

d ≡ yo − yb ≡ yo − Hxb,

is the “innovation” vector, where

Q = HBHT + R = 〈ddT 〉,

is the autocovariance of the innovation vec-

tor.
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It is rarely the case that the problem is small

enough to allow a direct solution to be ob-

tained. More commonly, an iterative approach

is adopted, such as the method of conjugate

gradients, or one of the many variants of this

kind of procedure.

Then it is usually found that the computa-

tional cost is dominated by the matrix-times

vector operations involving the background

covariance B. It is important to note that,

in an iterative approach, it is generally NOT

necessary to construct the full covariance ma-

trix B component by component. Rather, it

is sufficient to be able to execute efficiently

an operation of the form:

ui =
∑

j

CT
i,jvj

where index j is summed over grid values,

and C is an operator satisfying

CCT ≡ B

.
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By constructing the B operator as the product of a C and its adjoint we

ensure that B is self-adjoint and that it possesses no negative eigenvalues

(it is ‘positive semi-definite’) even when it is difficult or impossible to impose

these properties on C itself. Therefore, we ALWAYS construct B in this

way.

By making C smooth, we ensure B is also smooth.

If C is a Gaussian, or the result of a quasi-diffusive process, then B

inherits this property also.

But why would we want the result to be Gaussian?

Gaussians make convenient building blocks from which more general

shapes can be synthesized by a procedure analogous to (inverse)

Laplace transformation. 

Also, Gaussians in n dimensions are efficiently generated by convolving

n transversally-oriented one-dimensional Gaussians, making their

synthesis very efficient.
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When the intention is to produce a covariance shape that is isotropic

(at least, in the horizontal directions) the Gaussian profile is the

unique choice that factors into simple one-dimensional contributions.

Conversely, 1-D factors with NON-Gaussian profiles would lead to 

products, C (and hence B), whose anisotropy would betray the 

orientation of the computational lattice in an undesirable way.

In modern data assimilation, it IS desirable to generate covariances

that are spatially adaptive (and therefore inhomogeneous) and locally

anisotropic – stretched and tilted in response to the local meteorological 

flow conditions -- but still we wish to ensure that the principal directions of 

the computational lattice continue to have negligible imprint on the

covariances that are synthesized.
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(Figures prepared by Manuel de Pondeca)
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The stretched, tilted and deformed covariances are clearly NOT exactly

Gaussians anymore. 

The nearest analogue to the Gaussian in such a scenario is the 

‘Heat Kernel’ associated with an effective Diffusivity which is no 

longer separable into scalars associated with the respective coordinate 

directions, but is a more general TENSORIAL quantity with significant 

off-diagonal components.

Can we create covariance operators by explicit simulations of diffusion?

Yes – this was first proposed (for ocean data assimilation) by Derber

and Rosati (1989, GFDL) and extended to fully adaptive covariances

in the ocean by Weaver and Courtier (2001). But the process can be

VERY expensive computationally, especially when using explicit

integration.

Are there short-cuts?

Yes! We shall discuss some of them…
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Aspect tensors and their geometry

‘Aspect tensor’ is the term we use to denote the local second-moment

measure of spatial dispersion of the covariance contribution – for the

case where this contribution is generated by a diffusive process acting for

a period, T, of time, the aspect tensor is just 2 times T times the diffusivity.

In other word, if we choose our period of time to be one half, the aspect 

tensor becomes identical to the diffusivity.

Aspect tensors are symmetric – it is convenient to think of the n-dimensional

aspect tensors as occupying part of a linear space of dimension

N(N+1)/2

However, useful aspects tensors are also POSITIVE DEFINITE; 

therefore, they cannot occupy ALL of ‘aspect space’.
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2-D Aspect-tensor geometry

Define the tensor of covariance spatial dis-

persion, the “aspect tensor”, to be,

S =

[

Sxx, Sxy

Syx, Syy

]

which has eigenvalues,

λ± =
Sxx + Syy

2
±

√

(

Sxx + Syy

2

)2

+ S2
xy
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Define,

Szz =
Sxx + Syy

2
,

Saa =
Sxx − Syy

2
,

Sbb = Sxy,

S2
rr = S2

aa + S2
bb,

D = SxxSyy − S2
xy.

I.e.,

λ± = Szz ± Srr

D = λ+λ− ≡ S2
zz − S2

rr

The condition that both eigenvalues are pos-

itive therefore defines a cone
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Axx
Ayy

A3

A1

A2 = Axy

For n=2 dimensions the set of valid aspect tensors forms a cone in the

classical sense; in n>2 dimensions, aspect tensors also occupy a ‘cone’

of sorts, but one having a more complicated cross-section and

symmetry group.

What interpretation do we give a tensor on the boundary of the aspect cone?

In n=2 dimensions, a tensor occupying the surface of the cone is of rank 1.

It corresponds to a distribution on a line at some orientation.
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If the aspect space is a LINEAR space, in what sense can aspect tensors add?

A property of normalized homogeneous distributions is that their aspect

tensors ADD when the distributions are CONVOLVED.

What aspect tensor results from addition (= line-filter convolution) of two

non-collinear members of the cone’s boundary?

In n=2 dimensions, the resulting aspect tensor is a proper (non-degenerate)

one belonging to the interior of the aspect cone.

ANY 2-dimensional aspect tensor is obtainable as the result of the

composition of 2 suitably chosen line filters.

Any n-dimensional aspect tensor is obtainable as the result of the

composition of n suitably chosen line filters.

However, generic oblique line filters are inconvenient (though not impossible)

to apply in a regular computational lattice.

What modification to the general rule would allow the general aspect tensor

to be obtained from line filters restricted to oblique lines of the lattice?
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The ‘generalized grid lines’ in a 2-D lattice are dense on the surface of the cone.

In cross-section, they map to a dense covering of the bounding circle, so THREE

line filters suffice, since any projected aspect can be placed inside a triangle

whose vertices are each a projection of the aspect tensors of the generalized

grid lines.

In n=3 dimensions, where the dimensionality of the aspect space is n(n+1)/2 = 6,

the minimal number of generalized grid-line filters we need to convolve to

form a product distribution with a given tensor is, in general, SIX.

But whether in 2, 3 or n dimensions, the choice of qualifying line filters is not

unique.

How can we make the choice of qualifying line filters unique?

Along each generalized grid line, the ‘GENERATOR’ is the vector from one

lattice point to the next and, regardless of its directional ambiguity, its

self-outer-product tensor defines a unique image point on the boundary

of the aspect cone. The CONVEX HULL of these aspect-space generator

images is a polyhedral set inside the aspect cone and touching its boundary

in such a way that EVERY proper aspect tensor projects onto a polygonal

tile of the bounding shell of this new set. For n=2 each polygon is a triangle!



17

Generator

[p, q]

[1,0]

[0,1]

[1,1]

[1, -1]

[2, 1]

[3, 2]

…

Generator image(  times 2)

[p2 - q2, 2pq, p2 + q2]

[1, 0, 1]

[-1, 0, 1]

[0, 2, 2]

[0, -2, 2]

[3, 4, 5]

[5, 12, 13]

…..

Some of the ‘triads’ of this system

of lattice generators are:

{ [1,0], [0,1], [1,1] },

{ [1,0], [0,1], [1,-1] },

{ [1,0], [1,1], [2,1] }.

Aspect space images of the set

of triads completely tile the cone

of proper aspect tensors.

Is there a metric with respect to

which all triads are congruent?

YES! Let A and B be aspect tensors. Then

|A, B|2 = Trace [ log A-1B ]2

defines a Riemannian metric in which each triad’s standard tile is

equilateral, and is congruent to every other one.
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(a)

Klein

(1,0)(0,1)

(1,1)

(-1,1)

(2,1)(1,2)

(-1,2) (-2,1)

(3,1)

(3,2)(2,3)

(1,3)

(-1,3)

(-2,3) (-3,2)

(-3,1)

(b)

Poincare
/

(1,0)(0,1)

(1,1)

(-1,1)

(2,1)(1,2)

(-1,2) (-2,1)

(3,1)

(3,2)(2,3)

(1,3)

(-1,3)

(-2,3) (-3,2)

(-3,1)

Two projections of the tiling of the aspect cone by triads. If each aspect tensor

is assumed normalized to one of unit determinant, their metric geometry

is of the ‘hyperbolic’ type. The gnomonic map projection (a) is usually called

The ‘Klein’ representation and the stereographic map projection (b) is usually

called the ‘Poincare’ representation (both were derived earlier by Beltrami!)
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(a) (b)

Two neighboring triads on the lattice. It is convenient to tag each

generalized grid direction with a ‘color’ with no triad possessing the

same color twice. Then the line filters of each color can be performed

in sequence, avoiding the possibility of one line’s filtering interrupting

the application of the filter on a line that intersects the first.

The simplest system of chromatic triads involves just three colors.

Marking these colors on a lattice of generators, a periodic pattern

emerges.



20(1,0)

(4,1)

(3,1)

(5,2)

(2,1)

(5,3)
(3,2)

(4,3)
(1,1)

(3,4)
(2,3)

(3,5)

(1,2)

(2,5)

(1,3)

(1,4)

(0,1)

(b)

1,0

6,15,14,13,1

5,2

2,1

5,3

3,2

4,3

5,4

6,5

1,1

5,6

4,5

3,4

2,3

3,5

1,2

2,5

1,3

1,4

1,5

1,6

0,1

-1,6

-1,5

-1,4

-1,3

-2,5

-1,2

-3,5

-2,3

-3,4

-4,5

-5,6

-1,1

-6,5

-5,4

-4,3

-3,2

-5,3

-2,1

-5,2

-3,1-4,1-5,1-6,1

-1,0

(a)

(1,1)
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The triad-resolving algorithm loops over every geographical point of the 

computational lattice. 

At each location, it starts with given intended aspect tensor and searches

for a triad upon which the projection of the given aspect tensor leads to

‘weights’ associated with the corresponding three generators that are positive.

These weights become the effective 1-D aspect tensors of the individual

line filters (in grid units) at this location. If, at any stage of the search, the

weight of one member of the triad remains negative, this member is 

discarded, being replaced by the unique alternative. This is a form of

‘Simplex’ algorithm, and it always converges in a finite number of steps.

In practice, the aspect tensor is never constant – it varies considerably

with location, so the regions associated with each triad form a patchwork.

Between adjacent patches one weight diminishes and becomes zero,

the triad changes to a neighboring one, again, with an initially zero weight,

but this weight then grows.

But is the resulting covariance field smooth enough at these transitions?
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(a)    Basic triad, one smoothing iteration (b)    Basic triad, four smoothing iterations

NO! Sample covariances taken across an idealized triad transition,

using idealized filter numerics that exaggerate any defects, clearly

show that there is a potential problem as one line-filter is retired,

while another is recruited.
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The linearity of aspect tensors can be invoked to solve the problem.

Imagine the intended aspect tensor as the centroid of a symmetric ‘cloud’

of nearby aspect-points contained within a sphere of radius small enough

to ensure that the cloud only overlaps, at most, one pair of adjacent 

triads. Each point of the ‘cloud’ resolves into either one triad or the other

and is characterized by three weights in a proportion that depends upon its

relative location within that triad. Similarly, all the other points contribute

with their own weights for one or other triad in a characteristic proportion.

But, by linearity, the contributing weights may be integrated over the 

whole of the cloud and, if appropriately normalized, will supply weights

for the four generators associated with the adjacent pair of involved triads 

that guarantee that the final composition of line filters produces the intended

aspect tensor.

In this case, the weights associated with any given line direction involved

in the recruitment/retirement progression make the transition from or to zero

in a sufficiently gradual way to ensure the desired smoothness of the

synthesized covariance field.
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(a)    Blended triads, one smoothing iteration (b)    Blended triads, four smoothing iterations

Can we still ‘color’ the grid lines to avoid numerical conflicts?

Yes! And a new periodic pattern emerges:
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1,0

6,15,14,13,1

5,2

2,1

5,3

3,2

4,3

5,4

6,5

1,1

5,6

4,5

3,4

2,3

3,5

1,2

2,5

1,3

1,4

1,5

1,6

0,1

-1,6

-1,5

-1,4

-1,3

-2,5

-1,2

-3,5

-2,3

-3,4

-4,5

-5,6

-1,1

-6,5

-5,4

-4,3

-3,2

-5,3

-2,1

-5,2

-3,1-4,1-5,1-6,1

-1,0

(a)

(1,0)

(4,1)

(3,1)

(5,2)

(2,1)

(5,3)
(3,2)

(4,3)
(1,1)

(3,4)
(2,3)

(3,5)

(1,2)

(2,5)

(1,3)

(1,4)

(0,1)

(b)
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3 Dimensions

Is there a corresponding ‘HEXAD’ method in 3D?

YES. The convex-hull method shows that the six-dimensional aspect

space is completely tiled with congruent tiles, each with cross-section

of a six-vertex ‘simplex’. (This is NOT obvious; in n=4 spatial dimensions

the tiles for the ten-dimensional aspect space are of two kinds, of which

only one is a simplex, while the other is a 12-vertex polytope).

Is there a ‘Blended Hexads’ method?

YES

Do these 3D methods have associated ‘colorings’?

YES.

So – what does the pre-image of the generic hexad tile’s vertices look like?
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(a)

g1 g2

g3

g4

g5

g6

-g4

-g5

-g6

(b)

g2

g3

g4

g5

g6

-g4

-g5

-g6

g7

-g7

The six generators (and their six opposites) of each hexad form a lattice

CUBOCTAHEDRON (when their convex-hull is considered).

Above, we show generators (and their cuboctahedra) of a neighboring pair of 

hexads, sharing generators g2 – g6, but exchanging g7 for g1.
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Blending hexads requires precise knowledge of how they tile the

aspect space and how they join in the interior of the aspect cone.

For triads, their junctions involve only pairs; for any proper aspect

tensor there is always some finite radius such that neighborhoods no

larger than this radius are guaranteed to overlap no more than two

triads.

For any proper aspect tensor in n=3 dimensions we wish to be able to

assert that there is always some finite radius such that neighborhoods

no larger than this radius are guaranteed to overlap no more than M

hexads. What is the smallest M? 

How many generalized grid line directions are then involved?

The aspect cone’s interior junctions among its hexads involve, at most,

M = 16 hexads in mutual contact.

13 line orientations are involved in each such junction.
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Although the generic hexad junction slices through six dimensions of

aspect space, in three of those dimensions the configuration exhibits

no structure. A three-dimensional ‘cross-section’ through the junction

suffices to reveal its geometrical structure. It looks like this:

[1,1,0]

[1,1,-1]

[1,0,-1]

[0,1,1]

[-1,1,1]

[1,-1,0]

[1,1,1]

[1,-1,1]

[1,0,1]

[0,1,-1]

a1

a2

a3
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The radial distribution of the ‘cloud’ that we average to form the blending of

Hexads can be chosen to make the integration involved relatively straightforward.

(Members of the symmetric-parameter ‘Beta’ distribution serve admirably.)

In practice the blended hexads method pre-calculates a table of standardized

weights in a table sufficient to cover (via interpolation) any point of the generic

Hexad.

What general principle allows us to ‘color’, 

(a) the lines of the basic hexad? 

(b) The  blended hexads?

It is the generalization of the pattern of periodic 2*2 or 3*3 squares (2D) to

periodic 2*2*2 and 3*3*3 cubes (3D)  that provides the necessary

generalization. The sides need to be PRIME NUMBERS. Structures of

this special kind occur in the abstract algebraic theory of GALOIS FIELDS.
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1

0 + λ

0 + 0 + λ
2

1 + λ

0 + λ + λ
2

1 + λ + λ
2

1 + 0 + λ
2

λ
 0

λ
 1

λ
 2

λ
 3

λ
 4

λ
 5

λ
 6

Construction of Galois Field, GF{2
3
}

Primitive polynomial:    1 + λ + λ
3

Primitive element   :    λ

λ
0

λ
1

λ
2

 0

 1
 3

 2
 6

 4
 5

Repeated exponentiation
of lambda is done,

modulo-2 and modulo-

the primitive polynomial.



32

By repeating the pattern of “colors” (the non-zero elements of GF(8)) in 2*2*2 blocks

that cover the entire grid of lattice line generators, we find that each generator

takes one of seven colors and the six distinct line generators of the hexad, 

corresponding to diameters of the associated cuboctahedron, are each assigned

a different color.

In the extension of the hexad method to the “blended” form, the aspect tensor is,

in effect, mapped symmetrically to a spherical “cloud” (in aspect space) before

being resolved into hexad weights. Coded carefully, this can be shown to result in

a configuration of smoothing operations that separate naturally into the 13 “colors”

that are implied by the Galois field associated with a repetition of 3*3*3 blocks –

the field, GF(27).
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1

0 + λ

0 + 0 + λ
2

2 + λ

0 + 2λ + λ
2

2 + λ + 2λ
2

1 + λ + λ
2

2 + 2λ + λ
2

2 + 0 + 2λ
2

1 + λ

0 + λ + λ
2

2 + λ + λ
2

2 + 0 + λ
2

2

0 + 2λ

0 + 0 + 2λ
2

1 + 2λ

0 + λ + 2λ
2

1 + 2λ + λ
2

2 + 2λ + 2λ
2

1 + λ + 2λ
2

1 + 0 + λ
2

2 + 2λ

0 + 2λ + 2λ
2

1 + 2λ + 2λ
2

1 + 0 + 2λ
2

λ
 0

λ
 1

λ
 2

λ
 3

λ
 4

λ
 5

λ
 6

λ
 7

λ
 8

λ
 9

λ
10

λ
11

λ
12

λ
13

λ
14

λ
15

λ
16

λ
17

λ
18

λ
19

λ
20

λ
21

λ
22

λ
23

λ
24

λ
25

Construction of Galois Field, GF{3
3
}

Primitive polynomial:    1 + 2λ + λ
3

Primitive element   :    λ

λ
0

λ
1

λ
2

 0
13

 1
 9

 3

14
16

22

 2
21

12

10
 6

11

 4
18

 7

15
25

 8

17
20

 5

23
24

19

Repeated exponentiation of 
lambda is done modulo-3 and 
modulo- the primitive 
polynomial.

[GF(27)]
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λ
0

λ
1

λ
2

 0
13

 1
 9

 3

14
16

22

 2
21

12

10
 6

11

 4
18

 7

15
25

 8

17
20

 5

23
24

19

modulo 13

λ
0

λ
1

λ
2

 0
 0

 1
 9

 3

 1
 3

 9

 2
 8

12

10
 6

11

 4
 5

 7

 2
12

 8

 4
 7

 5

10
11

 6
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An algebraic field possesses the operation of multiplication and, for any 

non-null element, inversion, as well as addition. The triad and hexad

methods clearly exploit the additive group property.

Does the multiplicative property of a Galois Field play a role?

In the construction of an efficient Hexad-resolving algorithm the

multiplicative aspects of GF(8) played a valuable role.

The triads link to form a tree (simply-connected); hexads link to form

a network allowing multiple paths from one hexad to any other (and

hence, circuits). There are clearly many equally symmetric ways to

label the generators of a hexad – the elements of the octahedral group

applied to the cuboctahedron switch among these equivalent labelings.

For each of the SIX possible transitions to a neighboring hexad, this

choice must be resolved. It is desirable if, from this multitude of combinations, 

a systematic and symmetrical prescription for the transition re-labelings can

be chosen to ensure that the same final labeling is given to any hexad,

regardless of the route taken to reach it. The key to achieving this, is to

re-label the hexad generators so that the ‘colors’ in the new labeling pattern

Are just MULTIPLES, with respect to GF(8), of the replaced tableau of labels.
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(a) (b)

+1

+2

+6

-1

-2
-6

+3
-5

+4

+3

+4

-5

+7

-6

+2

+6

-3

-2

-7

+1+1

+3+3

--66

+5+5
--33

--44

--11

+6+6
--55

+2+2

+1  +4

+2  +5
+3  +6

+3  +5

+4  +7
-6  -2

+1  +4+1  +4

+2  +5+2  +5

+3  +6+3  +6

+g(7) = +g(2) + g(3) – g(1)

The rule for the replacement of g(1), -g(1):
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We have described how methods of (mostly) discrete geometry can be

applied, together with important ingredients from abstract algebra, to

formulate efficient algorithms for synthesizing spatially inhomogeneous 

and anisotropic covariance operators used for statistical data assimilation.

An important, and rather difficult technical problem plaguing such

adaptive covariance algorithms has been the problem of amplitude

normalization.

When the shape and spatial extent of the quasi-Gaussian covariance

contributions vary with location, and especially when this rate of variation

is relatively large in comparison with the intrinsic scale coherence of the

covariances themselves, it becomes quite difficult to make a good

approximation to the central amplitude of the final result of set period of

simulated inhomogeneous diffusion. Monte Carlo techniques, proposed

by Weaver and Courtier, estimate this amplitude by a method of multiple

costly trials, but the convergence of estimates by this approach is very

slow.

Is there a non-iterative asymptotic estimation method?

YES; it is known as the ‘Parametrix Expansion Method’ and it works 

assuming ISOTROPIC diffusion in a Riemannian geometry.
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Differential Geometry and the 

“Parametrix” Method

In the general case, though, the transformation to a Riemannian geometry 

has not made the amplitude estimation problem an easy one. However, 

there does exist a literature on the estimation of solutions to the “Heat 

Kernel” in curved spaces (for example, Rosenberg 1997: The Laplacian on a Riemannian 

manifold, C.U.P.) and one approach, although it can only lead to an asymptotic 

approximation at each point, looks promising.

This approach is the “Parametrix method”.  Normal coordinates are 

constructed to be “as Cartesian as possible locally”; axes are orthogonal 

and the radials through the local origin are geodesics on which distances 

measure true. The idea behind the parametrix method is to represent the 

evolving solution of the diffusion problem as the corresponding Euclidean 

solution in the normal coordinates, multiplied by a modulating function that 

is smooth in “time” and space.



39

Then, for sufficiently small “times” we should be able to approximate the 

modulating function in a series of powers of the normal coordinates and 

“time”. The only part of the solution we shall end up being interested in 

is the solution at the origin and at “time” = ½ (when the aspect tensor 

corresponds with the diffusivity). There is a systematic recursive 

algorithm for generating successive approximations in finite powers 

where one order of solution, fed back into original diffusion equation, 

provides the next order of correction.

While, in principle, this process can be continued without limit, in 

practice it rapidly leads to extremely complicated algebra and the 

successive approximations, typical of many asymptotic series, do not 

converge to the true solution for any finite time. Nevertheless, provided 

the original aspect tensor varies sufficiently smoothly and gradually, the 

approximate solutions obtained by this approach should be adequate. 

Most of the algebraic operations involved can actually be reduced to 

forms that lend themselves to mechanization. We give two idealized 

examples of the results obtained from the asymptotic method but only 

give an outline here of some of the steps required for the general case.
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These graphs show the 2D results comparing the asymptotic expansion for 

the amplitude quotient with the true solution in the special case where the 

Gaussian curvature K is uniform. Even out to a curvature of +/- 5 non-

dimensional units, the asymptotic method with a few terms should give a very 

good approximation, as shown. However, the expansion is formally

divergent. The true amplitude quotient is denoted “A”; other graphs show 

asymptotic expansions truncated to the degrees indicated by the superscript.
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Corresponding results in 3D, with uniform sectional curvature, K. But 

now, the asymptotic expansion converges to exp(K/2). For negative 

curvature (hyperbolic geometry) this is the exact solution; for positive 

curvature, there is an error that grows with K.
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An outline of the treatment in the case of general Riemannian geometry 

follows. 

First, we observe that, in normal coordinates we can express the covariant 

metric tensor as a Taylor series (starting with the identity, and with vanishing 

first-order term). The construction of the normal coordinate system, in which 

radials are geodesics measuring true at all distances out, implies that the 

radial vector is an eigenvector, with eigenvalue=one, of both metric tensors 

at every point. This imposes important constraints on all the quadratic, and 

higher, Taylor series coefficients of the metric; these become the celebrated 

“Bianchi identities” (algebraic and differential) when translated into the 

implications for the Riemann curvature tensor. (In fact, it is possible to 

express the array of quadratic Taylor series coefficients for the metric 

directly as simple linear multiples of the Riemann tensor.) 

The Bianchi, and other symmetries, restrict the actual number of degrees of 

freedom at each degree of the Taylor series. For example, in 3D, we might 

expect the Taylor series for a symmetric metric tensor (6 components) to 

require 6*6=36 independent coefficients at second degree, but only 6 are 

actually needed. At 3rd degree, the Bianchi differential identities come into 

play to keep the independent coefficients at only 15.
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The second derivatives of the covariant metric (in normal coordinate) provide 

the Riemann tensor. Successive covariant differentiations of the Riemann 

tensor produce new tensors which can be equated to tensorial expressions that 

involve only the Taylor coefficient arrays of the metric tensor up to a finite 

degree. However, it is the origin-evaluated derivatives of the metric tensor –

i.e., these same Taylor coefficients, that force the successive terms in the 

parametrix method for approximating the modulating function relating the non-

Euclidean solution of the diffusion problem to its standard Euclidean 

counterpart.

It therefore becomes possible to express the successive terms in the series 

expansion of the amplitude adjustment quotient directly in terms of the 

Riemann tensor and its first few covariant derivatives. These latter quantities 

are straightforward to evaluate on the original grid and, being tensorial, are 

therefore relatively easy to convert to normal coordinate representations if 

needed. However, contracted versions of the curvature: the “Gaussian 

curvature” in 2D; the “Ricci curvature” in 3D; should make it more convenient 

to express the approximations to the amplitude quotients directly in terms of 

these simpler quantities.
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In n dimensions:

A ≈ 1 +
R

12
+

1

1440

(

12∇2
R + 5R2

− 2RijR
ij + 2RijklR

ijkl
)

.

When n = 3:

A ≈ 1 +
R

12
+

1

480

(

2RijR
ij + R

2 + 4∇2
R

)

.

When n = 2, and κ is the Gaussian curvature:

A ≈ 1 +
κ

6
+

1

60
(κ2 + ∇

2
κ).

The parametrix expansion for the amplitude quotient to second order:
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Conclusions

Using the “Triad” and “Hexad” methods, we can now generate smooth 

quasi-Gaussian covariance contributions with arbitrary degrees of 

anisotropy. Asymptotic methods based on differential geometric ideas 

are being developed and tested in the Gridpoint Statistical Interpolation 

at NCEP to make the normalizaton of these filters in inhomogeneous 

cases more accurate and efficient.

We have illustrated, by the choice of topics highlighted in this talk,

how areas of what might once have been regarded as mostly “Pure”

mathematics are making increasingly profound and essential 

contributions to the way Applied computational mathematics is put

into operational practice in a context where timeliness of the final

result, and therefore the numerical efficiency of the procedure employed 

to achieve it, is such an overriding constraint.
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